Visual object tracking with adaptive structural convolutional network

被引:57
作者
Yuan, Di [1 ]
Li, Xin [1 ]
He, Zhenyu [1 ,2 ]
Liu, Qiao [1 ]
Lu, Shuwei [1 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Visual tracking; Convolution neural network; Structural filters; Adaptive weighting; REGION;
D O I
10.1016/j.knosys.2020.105554
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional Neural Networks (CNN) have been demonstrated to achieve state-of-the-art performance in visual object tracking task. However, existing CNN-based trackers usually use holistic target samples to train their networks. Once the target undergoes complicated situations (e.g., occlusion, background clutter, and deformation), the tracking performance degrades badly. In this paper, we propose an adaptive structural convolutional filter model to enhance the robustness of deep regression trackers (named: ASCT). Specifically, we first design a mask set to generate local filters to capture local structures of the target. Meanwhile, we adopt an adaptive weighting fusion strategy for these local filters to adapt to the changes in the target appearance, which can enhance the robustness of the tracker effectively. Besides, we develop an end-to-end trainable network comprising feature extraction, decision making, and model updating modules for effective training. Extensive experimental results on large benchmark datasets demonstrate the effectiveness of the proposed ASCT tracker performs favorably against the state-of-the-art trackers. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 74 条
[31]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[32]  
Li H., 2014, BMVC, P1, DOI DOI 10.5244/C.28.56
[33]   Deep visual tracking: Review and experimental comparison [J].
Li, Peixia ;
Wang, Dong ;
Wang, Lijun ;
Lu, Huchuan .
PATTERN RECOGNITION, 2018, 76 :323-338
[34]   Target-Aware Deep Tracking [J].
Li, Xin ;
Ma, Chao ;
Wu, Baoyuan ;
He, Zhenyu ;
Yang, Ming-Hsuan .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1369-1378
[35]   Hierarchical spatial-aware Siamese network for thermal infrared object tracking [J].
Li, Xin ;
Liu, Qiao ;
Fan, Nana ;
He, Zhenyu ;
Wang, Hongzhi .
KNOWLEDGE-BASED SYSTEMS, 2019, 166 :71-81
[36]   A multi-view model for visual tracking via correlation filters [J].
Li, Xin ;
Liu, Qiao ;
He, Zhenyu ;
Wang, Hongpeng ;
Zhang, Chunkai ;
Chen, Wen-Sheng .
KNOWLEDGE-BASED SYSTEMS, 2016, 113 :88-99
[37]  
Li Y, 2015, PROC CVPR IEEE, P353, DOI 10.1109/CVPR.2015.7298632
[38]   A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration [J].
Li, Yang ;
Zhu, Jianke .
COMPUTER VISION - ECCV 2014 WORKSHOPS, PT II, 2015, 8926 :254-265
[39]   Encoding Color Information for Visual Tracking: Algorithms and Benchmark [J].
Liang, Pengpeng ;
Blasch, Erik ;
Ling, Haibin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) :5630-5644
[40]   MSST-ResNet: Deep multi-scale spatiotemporal features for robust visual object tracking [J].
Liu, Bing ;
Liu, Qiao ;
Zhu, Zhengyu ;
Zhang, Taiping ;
Yang, Yong .
KNOWLEDGE-BASED SYSTEMS, 2019, 164 :235-252