Wang-Landau Monte Carlo simulation of isotropic-nematic transition in liquid crystals

被引:55
作者
Jayasri, D [1 ]
Sastry, VSS
Murthy, KPN
机构
[1] Univ Hyderabad, Sch Phys, Hyderabad 500046, Andhra Pradesh, India
[2] Indira Gandhi Ctr Atom Res, Div Mat Sci, Kalpakkam 603102, Tamil Nadu, India
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 03期
关键词
D O I
10.1103/PhysRevE.72.036702
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Wang and Landau proposed recently, a simple and flexible non-Boltzmann Monte Carlo method for estimating the density of states, from which the macroscopic properties of a closed system can be calculated. They demonstrated their algorithm by considering systems with discrete energy spectrum. We find that the Wang-Landau algorithm does not perform well when the system has continuous energy spectrum. We propose in this paper modifications to the algorithm and demonstrate their performance on a lattice model of liquid crystalline system (with Lebwohl-Lasher interaction having continuously varying energy), exhibiting transition from high temperature isotropic to low temperature nematic phase.
引用
收藏
页数:7
相关论文
共 25 条
[1]  
[Anonymous], J STAT PHYS
[2]   Structure of water; A Monte Carlo calculation [J].
Barker, J. A. ;
Watts, R. O. .
CHEMICAL PHYSICS LETTERS, 1969, 3 (03) :144-145
[3]   MULTICANONICAL ALGORITHMS FOR 1ST ORDER PHASE-TRANSITIONS [J].
BERG, BA ;
NEUHAUS, T .
PHYSICS LETTERS B, 1991, 267 (02) :249-253
[4]   MULTICANONICAL ENSEMBLE - A NEW APPROACH TO SIMULATE 1ST-ORDER PHASE-TRANSITIONS [J].
BERG, BA ;
NEUHAUS, T .
PHYSICAL REVIEW LETTERS, 1992, 68 (01) :9-12
[5]   Wang-Landau estimation of magnetic properties for the Heisenberg model [J].
Brown, G ;
Schulthess, TC .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
[6]   FINITE-SIZE EFFECTS AT TEMPERATURE-DRIVEN 1ST-ORDER TRANSITIONS [J].
CHALLA, MSS ;
LANDAU, DP ;
BINDER, K .
PHYSICAL REVIEW B, 1986, 34 (03) :1841-1852
[7]   CONFINEMENT AND THE CRITICAL DIMENSIONALITY OF SPACE-TIME [J].
CREUTZ, M .
PHYSICAL REVIEW LETTERS, 1979, 43 (08) :553-556
[8]   GENERALIZATION OF THE FORTUIN-KASTELEYN-SWENDSEN-WANG REPRESENTATION AND MONTE-CARLO ALGORITHM [J].
EDWARDS, RG ;
SOKAL, AD .
PHYSICAL REVIEW D, 1988, 38 (06) :2009-2012
[9]   A MONTE-CARLO INVESTIGATION OF THE LEBWOHL-LASHER LATTICE MODEL IN THE VICINITY OF ITS ORIENTATIONAL PHASE-TRANSITION [J].
FABBRI, U ;
ZANNONI, C .
MOLECULAR PHYSICS, 1986, 58 (04) :763-788
[10]   Density of states of a binary Lennard-Jones glass [J].
Faller, R ;
de Pablo, JJ .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (08) :4405-4408