Impact of plasma poloidal rotation on resistive wall mode instability in toroidally rotating plasmas

被引:13
作者
Aiba, N. [1 ]
Shiraishi, J. [1 ]
Tokuda, S. [2 ]
机构
[1] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan
[2] Res Org Informat Sci & Technol, Shinagawa Ku, Tokyo 1400001, Japan
关键词
FEEDBACK STABILIZATION; STABILITY; TOKAMAKS; SHEAR;
D O I
10.1063/1.3551731
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Stability of resistive wall mode (RWM) is investigated in a cylindrical plasma and an axisymmetric toroidal plasma by taking into account not only toroidal rotation but also poloidal rotation. Since the Doppler shifted frequency is responsible for the RWM stability, the modification of this Doppler shifted frequency by poloidal rotation affects the rotation effect on RWM. When a poloidal rotation frequency is not so large, the effect of poloidal rotation on the RWM stability can be approximately treated with the modified toroidal rotation frequency. In a toroidal plasma, this modified frequency is determined by subtracting a toroidal component of the rotation parallel to the magnetic field from the toroidal rotation frequency. The poloidal rotation that counteracts the effect of the Doppler shift strongly reduces the stabilizing effect of toroidal rotation, but by changing the rotational direction, the poloidal rotation enhances this stabilizing effect. This trend is confirmed in not only a cylindrical plasma but also a toroidal plasma. This result indicates that poloidal rotation produces the dependence of the critical toroidal rotation frequency for stabilizing RWM on the rotational direction of toroidal rotation in the same magnetic configuration. (C) 2011 American Institute of Physics. [doi:10.1063/1.3551731]
引用
收藏
页数:5
相关论文
共 27 条
[1]   Destabilization mechanism of edge localized MHD mode by a toroidal rotation in tokamaks [J].
Aiba, N. ;
Furukawa, M. ;
Hirota, M. ;
Tokuda, S. .
NUCLEAR FUSION, 2010, 50 (04)
[2]   MINERVA: Ideal MHD stability code for toroidally rotating tokamak plasmas [J].
Aiba, N. ;
Tokuda, S. ;
Furukawa, M. ;
Snyder, P. B. ;
Chu, M. S. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (08) :1282-1304
[3]   Poloidal rotation in TFTR reversed shear plasmas [J].
Bell, RE ;
Levinton, FM ;
Batha, SH ;
Synakowski, EJ ;
Zarnstorff, MC .
PHYSICAL REVIEW LETTERS, 1998, 81 (07) :1429-1432
[4]   Resistive Wall Mode Instability at Intermediate Plasma Rotation [J].
Berkery, J. W. ;
Sabbagh, S. A. ;
Betti, R. ;
Hu, B. ;
Bell, R. E. ;
Gerhardt, S. P. ;
Manickam, J. ;
Tritz, K. .
PHYSICAL REVIEW LETTERS, 2010, 104 (03)
[5]   STABILITY ANALYSIS OF RESISTIVE WALL KINK MODES IN ROTATING PLASMAS [J].
BETTI, R ;
FREIDBERG, JP .
PHYSICAL REVIEW LETTERS, 1995, 74 (15) :2949-2952
[6]   STABILIZATION OF EXTERNAL-MODES IN TOKAMAKS BY RESISTIVE WALLS AND PLASMA ROTATION [J].
BONDESON, A ;
WARD, DJ .
PHYSICAL REVIEW LETTERS, 1994, 72 (17) :2709-2712
[7]   Stabilization of the external kink and the resistive wall mode [J].
Chu, M. S. ;
Okabayashi, M. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (12)
[8]   Normal mode approach to modelling of feedback stabilization of the resistive wall mode [J].
Chu, MS ;
Chance, MS ;
Glasser, AH ;
Okabayashi, M .
NUCLEAR FUSION, 2003, 43 (06) :441-454
[9]   EFFECT OF TOROIDAL PLASMA-FLOW AND FLOW SHEAR ON GLOBAL MAGNETOHYDRODYNAMIC MHD MODES [J].
CHU, MS ;
GREENE, JM ;
JENSEN, TH ;
MILLER, RL ;
BONDESON, A ;
JOHNSON, RW ;
MAUEL, ME .
PHYSICS OF PLASMAS, 1995, 2 (06) :2236-2241
[10]   Poloidal rotation dynamics, radial electric field, and neoclassical theory in the jet internal-transport-barrier region -: art. no. 155003 [J].
Crombé, K ;
Andrew, Y ;
Brix, M ;
Giroud, C ;
Hacquin, S ;
Hawkes, NC ;
Murari, A ;
Nave, MFF ;
Ongena, J ;
Parail, V ;
Van Oost, G ;
Voitsekhovitch, I ;
Zastrow, KD .
PHYSICAL REVIEW LETTERS, 2005, 95 (15)