Thermoelectric properties of graphene nanoribbons, junctions and superlattices

被引:98
作者
Chen, Y. [1 ]
Jayasekera, T. [1 ]
Calzolari, A. [2 ]
Kim, K. W. [3 ]
Nardelli, M. Buongiorno [1 ,4 ]
机构
[1] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
[2] CNR, DEMOCRITOS Natl Simulat Ctr, IOM, Theory Elettra Grp, I-34014 Trieste, Italy
[3] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
[4] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
D O I
10.1088/0953-8984/22/37/372202
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Using model interaction Hamiltonians for both electrons and phonons and Green's function formalism for ballistic transport, we have studied the thermal conductance and the thermoelectric properties of graphene nanoribbons (GNR), GNR junctions and periodic superlattices. Among our findings we have established the role that interfaces play in determining the thermoelectric response of GNR systems both across single junctions and in periodic superlattices. In general, increasing the number of interfaces in a single GNR system increases the peak ZT values that are thus maximized in a periodic superlattice. Moreover, we proved that the thermoelectric behavior is largely controlled by the width of the narrower component of the junction. Finally, we have demonstrated that chevron-type GNRs recently synthesized should display superior thermoelectric properties.
引用
收藏
页数:5
相关论文
共 26 条
[1]  
BUONGIORNO M, 1999, PHYS REV B, V60, P7828
[2]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[3]  
Datta S., 1997, Electronic transport in mesoscopic systems, DOI DOI 10.1063/1.2807624
[4]   Peculiar width dependence of the electronic properties of carbon nanoribbons [J].
Ezawa, M .
PHYSICAL REVIEW B, 2006, 73 (04)
[5]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
[6]   Thermal conductivity of graphene nanoribbons [J].
Guo, Zhixin ;
Zhang, Dier ;
Gong, Xin-Gao .
APPLIED PHYSICS LETTERS, 2009, 95 (16)
[7]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[8]   Narrow graphene nanoribbons from carbon nanotubes [J].
Jiao, Liying ;
Zhang, Li ;
Wang, Xinran ;
Diankov, Georgi ;
Dai, Hongjie .
NATURE, 2009, 458 (7240) :877-880
[9]   Chemically derived, ultrasmooth graphene nanoribbon semiconductors [J].
Li, Xiaolin ;
Wang, Xinran ;
Zhang, Li ;
Lee, Sangwon ;
Dai, Hongjie .
SCIENCE, 2008, 319 (5867) :1229-1232
[10]   Electrostatic confinement of electrons in graphene nanoribbons [J].
Liu, Xinglan ;
Oostinga, Jeroen B. ;
Morpurgo, Alberto F. ;
Vandersypen, Lieven M. K. .
PHYSICAL REVIEW B, 2009, 80 (12)