Atomically precise bottom-up fabrication of graphene nanoribbons

被引:2991
作者
Cai, Jinming [1 ,2 ]
Ruffieux, Pascal [1 ,2 ]
Jaafar, Rached [1 ,2 ]
Bieri, Marco [1 ,2 ]
Braun, Thomas [1 ,2 ]
Blankenburg, Stephan [1 ,2 ]
Muoth, Matthias [3 ]
Seitsonen, Ari P. [4 ,5 ,6 ]
Saleh, Moussa [7 ]
Feng, Xinliang [7 ]
Muellen, Klaus [7 ]
Fasel, Roman [1 ,2 ,8 ]
机构
[1] Empa, Swiss Fed Labs Mat Sci & Technol, Nanotech Surfaces Lab, CH-3602 Thun, Switzerland
[2] Empa, Swiss Fed Labs Mat Sci & Technol, Nanotech Surfaces Lab, CH-8600 Dubendorf, Switzerland
[3] ETH, Dept Mech & Proc Engn Micro & Nanosyst, CH-8092 Zurich, Switzerland
[4] Univ Zurich, Inst Phys Chem, CH-8057 Zurich, Switzerland
[5] CNRS, IMPMC, F-75252 Paris, France
[6] Univ Paris 06, F-75252 Paris, France
[7] Max Planck Inst Polymer Res, D-55124 Mainz, Germany
[8] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
CARBON; FORM;
D O I
10.1038/nature09211
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene nanoribbons-narrow and straight-edged stripes of graphene, or single-layer graphite-are predicted to exhibit electronic properties that make them attractive for the fabrication of nanoscale electronic devices(1-3). In particular, although the twodimensional parent material graphene(4,5) exhibits semimetallic behaviour, quantum confinement and edge effects(2,6) should render all graphene nanoribbons with widths smaller than 10 nm semiconducting. But exploring the potential of graphene nanoribbons is hampered by their limited availability: although they have been made using chemical(7-9), sonochemical(10) and lithographic(11,12) methods as well as through the unzipping of carbon nanotubes(13-16), the reliable production of graphene nanoribbons smaller than 10 nm with chemical precision remains a significant challenge. Here we report a simple method for the production of atomically precise graphene nanoribbons of different topologies and widths, which uses surface-assisted coupling(17,18) of molecular precursors into linear polyphenylenes and their subsequent cyclodehydrogenation(19,20). The topology, width and edge periphery of the graphene nanoribbon products are defined by the structure of the precursor monomers, which can be designed to give access to a wide range of different graphene nanoribbons. We expect that our bottom-up approach to the atomically precise fabrication of graphene nanoribbons will finally enable detailed experimental investigations of the properties of this exciting class of materials. It should even provide a route to graphene nanoribbon structures with engineered chemical and electronic properties, including the theoretically predicted intraribbon quantum dots(21), superlattice structures(22) and magnetic devices based on specific graphene nanoribbon edge states(3).
引用
收藏
页码:470 / 473
页数:4
相关论文
共 30 条
[1]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[2]  
Briggs D., 1992, HIGH RESOLUTION XPS
[3]   Technique for the Dry Transfer of Epitaxial Graphene onto Arbitrary Substrates [J].
Caldwell, Joshua D. ;
Anderson, Travis J. ;
Culbertson, James C. ;
Jernigan, Glenn G. ;
Hobart, Karl D. ;
Kub, Fritz J. ;
Tadjer, Marko J. ;
Tedesco, Joseph L. ;
Hite, Jennifer K. ;
Mastro, Michael A. ;
Myers-Ward, Rachael L. ;
Eddy, Charles R., Jr. ;
Campbell, Paul M. ;
Gaskill, D. Kurt .
ACS NANO, 2010, 4 (02) :1108-1114
[4]   Bulk production of a new form of sp2 carbon:: Crystalline graphene nanoribbons [J].
Campos-Delgado, Jessica ;
Romo-Herrera, Jose Manuel ;
Jia, Xiaoting ;
Cullen, David A. ;
Muramatsu, Hiroyuki ;
Kim, Yoong Ahm ;
Hayashi, Takuya ;
Ren, Zhifeng ;
Smith, David J. ;
Okuno, Yu ;
Ohba, Tomonori ;
Kanoh, Hirofumi ;
Kaneko, Katsumi ;
Endo, Morinobu ;
Terrones, Humberto ;
Dresselhaus, Mildred S. ;
Terrones, Mauriclo .
NANO LETTERS, 2008, 8 (09) :2773-2778
[5]   Self-assembly of periodic bicomponent wires and ribbons [J].
Canas-Ventura, Marta E. ;
Xiao, Wende ;
Wasserfallen, Daniel ;
Muellen, Klaus ;
Brune, Harald ;
Barth, Johannes V. ;
Fasel, Roman .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (11) :1814-1818
[6]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[7]   Templated growth of metal-organic coordination chains at surfaces [J].
Classen, T ;
Fratesi, G ;
Costantini, G ;
Fabris, S ;
Stadler, FL ;
Kim, C ;
de Gironcoli, S ;
Baroni, S ;
Kern, K .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (38) :6142-6145
[8]   Crystallographic etching of few-layer graphene [J].
Datta, Sujit S. ;
Strachan, Douglas R. ;
Khamis, Samuel M. ;
Johnson, A. T. Charlie .
NANO LETTERS, 2008, 8 (07) :1912-1915
[9]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[10]   On-surface covalent coupling in ultrahigh vacuum [J].
Gourdon, Andre .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (37) :6950-6953