Hydrogen-bonding interactions in the active sites of cytochrome P450cam and its site-directed mutants

被引:37
作者
Deng, TJ
Macdonald, IDG
Simianu, MC
Sykora, M
Kincaid, JR
Sligar, SG
机构
[1] Marquette Univ, Dept Chem, Milwaukee, WI 53201 USA
[2] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA
关键词
D O I
10.1021/ja001517d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Resonance Raman spectroscopy is applied to the cyanide adducts of cytochrome P450cam and its T252A and D251N site-directed mutants, both in their substrate-free and camphor-bound forms, to probe active-site heme structure and, in particular, interactions of the FeCN fragment with tial active-site H-bond donors. In contrast to the ferrous CO and ferric NO adducts, which from only essentially linear (slightly distorted) FeXY fragments, the spectra of the ferric CN- adducts provide clear evidence the for the existence of an additional, rather highly bent, conformer; that is, the cyanide complexes form both linear and bent conformers in both the substrate-free and substrate-bound forms. Formation of this bent conformer is most reasonably attributed to the presence df off-axis H-bond donors, which induce distortion on the FeCN fragment but not the FeCO and FeNO fragments, which are poorer H-bond acceptors. For all three proteins, the substrate-free form exhibits a complex spectral pattern which arises because one of the modes associated with the FeCN fragment is coupled with two heme macrocycle deformation modes. Significantly, no evidence for such coupling is observed in the spectra of the camphor-bound forms. While various unknown factors may possibly give rise to selective activation of such coupling in the substrate-free derivative, given the known facts about the active-site architecture of this enzyme, a plausible explanation is that the bent conformer is oriented toward the water-filled substrate-binding site in the substrate-free form, but oppositely, toward the proposed proton delivery shuttle, in the substrate-bound form. Sensitivity of the FeCN modes to H2O/D2O exchange in the two camphor-bound mutants, which is apparently absent for the camphor-bound native protein, is most reasonably attributed to the known presence of extra water in the active sites of these mutants.
引用
收藏
页码:269 / 278
页数:10
相关论文
共 43 条
[1]   RESONANCE RAMAN INVESTIGATION OF CYANIDE LIGATED BEEF-LIVER AND ASPERGILLUS-NIGER CATALASES [J].
ALMUSTAFA, J ;
SYKORA, M ;
KINCAID, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (18) :10449-10460
[2]   RESONANCE RAMAN-STUDY OF CYANIDE-LIGATED HORSERADISH-PEROXIDASE - DETECTION OF 2 BINDING GEOMETRIES AND DIRECT EVIDENCE FOR THE PUSH-PULL EFFECT [J].
ALMUSTAFA, J ;
KINCAID, JR .
BIOCHEMISTRY, 1994, 33 (08) :2191-2197
[3]  
BANGCHAROENPAURPONG O, 1986, J BIOL CHEM, V261, P8089
[4]   Reduced oxy intermediate observed in D251N cytochrome P450(cam) [J].
Benson, DE ;
Suslick, KS ;
Sligar, SG .
BIOCHEMISTRY, 1997, 36 (17) :5104-5107
[5]   EPR and ENDOR of catalytic intermediates in cryoreduced native and mutant oxy-cytochromes P450cam: Mutation-induced changes in the proton delivery system [J].
Davydov, R ;
Macdonald, IDG ;
Makris, TM ;
Sligar, SG ;
Hoffman, BM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (45) :10654-10655
[6]  
EGAWA T, 1991, J BIOL CHEM, V266, P10246
[7]   ALTERNATIVE CARBON-MONOXIDE BINDING MODES FOR HORSERADISH-PEROXIDASE STUDIED BY RESONANCE RAMAN-SPECTROSCOPY [J].
EVANGELISTAKIRKUP, R ;
SMULEVICH, G ;
SPIRO, TG .
BIOCHEMISTRY, 1986, 25 (15) :4420-4425
[8]  
GERBER NC, 1994, J BIOL CHEM, V269, P4260
[9]   CATALYTIC MECHANISM OF CYTOCHROME-P-450 - EVIDENCE FOR A DISTAL CHARGE RELAY [J].
GERBER, NC ;
SLIGAR, SG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (22) :8742-8743
[10]  
GUNSALUS IC, 1974, MOL MECHANISMS OXYGE, P559