Multiwavelet prefilters -: I:: Orthogonal prefilters preserving approximation order p≤2

被引:72
作者
Hardin, DP [1 ]
Roach, DW
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37203 USA
[2] Sandia Natl Labs, Dept Appl & Numer Math, Albuquerque, NM 87185 USA
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING | 1998年 / 45卷 / 08期
关键词
approximation order; multiwavelets; orthogonality; pre-filter; quasi-interpolation; wavelets;
D O I
10.1109/82.718820
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In applications using multiwavelets, there is a necessary step of associating a given discrete signal with a function in the scaling function space V-0. This association is equivalent to including a prefilter and a post-filter for the filter bank determined by the underlying multiwavelets. We give a construction for orthogonal (paraunitary) finite-impulse esponse (FIR) prefilters that preserve the approximation order of a given arbitrary scaling vector Phi with approximation order p less than or equal to 2, We give several such prefilters for the DGHM multiwavelet.
引用
收藏
页码:1106 / 1112
页数:7
相关论文
共 8 条
[1]   Construction of orthogonal wavelets using fractal interpolation functions [J].
Donovan, GC ;
Geronimo, JS ;
Hardin, DP ;
Massopust, PR .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (04) :1158-1192
[2]   FRACTAL FUNCTIONS AND WAVELET EXPANSIONS BASED ON SEVERAL SCALING FUNCTIONS [J].
GERONIMO, JS ;
HARDIN, DP ;
MASSOPUST, PR .
JOURNAL OF APPROXIMATION THEORY, 1994, 78 (03) :373-401
[3]  
JIA RQ, 1995, APPROXIMATION THEORY, V2, P179
[4]  
SAID A, UNPUB IEEE T CIRCUIT
[5]  
STRELA V, IN PRESS IEEE T IMAG
[6]  
Vaidyanathan P. P., 1993, MULTIRATE SYSTEMS FI
[7]   Design of prefilters for discrete multiwavelet transforms [J].
Xia, XG ;
Geronimo, JS ;
Hardin, DP ;
Suter, BW .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (01) :25-35
[8]  
XIA XG, 1996, NEW PREFILTER DESIGN