A method for canopy water content estimation for highly vegetated surfaces-shortwave infrared perpendicular water stress index

被引:50
作者
Ghulam, Abduwasit [1 ]
Li Zhao-Liang
Qin QiMing
Tong QingXi
Wang JiHua
Kasimu, Alimujiang
Zhu Lin
机构
[1] Peking Univ, Inst Remote Sensing, GIS, Beijing 100871, Peoples R China
[2] Lab Sci Image Informat Teledetect, UMR7005, F-67400 Illkirch Graffenstaden, France
[3] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[4] St Louis Univ, Ctr Environm Sci, St Louis, MO 63103 USA
[5] Natl Engn Res Ctr Informat Technol Agr, Beijing 100089, Peoples R China
[6] Chiba Univ, Ctr Environm Remote Sensing, Chiba 263, Japan
来源
SCIENCE IN CHINA SERIES D-EARTH SCIENCES | 2007年 / 50卷 / 09期
关键词
leaf water content; shortwave infrared perpendicular water stress index (SPSI); remote estimation of vegetation water content;
D O I
10.1007/s11430-007-0086-9
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, a new method for canopy water content (FMC) estimation for highly vegetated surfaces-shortwave infrared perpendicular water stress index (SPSI) is developed using NIR, SWIR wavelengths of Enhanced Thematic Mapper Plus (ETM+) on the basis of spectral features and distribution of surface targets with different water conditions in NIR-SWIR spectral space. The developed method is further explored with radiative transfer simulations using PROSPECT, Lillesaeter, SailH and 6S. It is evident from the results of validation derived from satellite synchronous field measurements that SPSI is highly correlated with FMC, coefficient of determination (R squared) and root mean square error are 0.79 and 26.41 %. The paper concludes that SPSI has a potential in vegetation water content estimation in terms of FMC.
引用
收藏
页码:1359 / 1368
页数:10
相关论文
共 29 条
[1]  
ALONSO M, 1996, EARSEL ADV REMOTE SE, V4, P1
[2]  
[Anonymous], P 2 INT S ADV TECHN
[3]   Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level [J].
Bowyer, P ;
Danson, FM .
REMOTE SENSING OF ENVIRONMENT, 2004, 92 (03) :297-308
[4]  
Burgan R.E., 1996, EARSEL ADV REMOTE SE, V4, P1
[5]   Detecting vegetation leaf water content using reflectance in the optical domain [J].
Ceccato, P ;
Flasse, S ;
Tarantola, S ;
Jacquemoud, S ;
Grégoire, JM .
REMOTE SENSING OF ENVIRONMENT, 2001, 77 (01) :22-33
[6]   Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1 - Theoretical approach [J].
Ceccato, P ;
Gobron, N ;
Flasse, S ;
Pinty, B ;
Tarantola, S .
REMOTE SENSING OF ENVIRONMENT, 2002, 82 (2-3) :188-197
[7]  
Ceccato P, 2002, REMOTE SENS ENVIRON, V82, P198, DOI [10.1016/S0034-4257(02)00036-6, 10.1016/S0034-4257(02)00037-8]
[8]   Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data:: applications in fire danger assessment [J].
Chuvieco, E ;
Riaño, D ;
Aguado, I ;
Cocero, D .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (11) :2145-2162
[9]   Estimating live fuel moisture content from remotely sensed reflectance [J].
Danson, FM ;
Bowyer, P .
REMOTE SENSING OF ENVIRONMENT, 2004, 92 (03) :309-321
[10]   ESTIMATION OF THE VEGETATION CONTRIBUTION TO THE 1.65/2.22-MU-M RATIO IN AIRBORNE THEMATIC-MAPPER IMAGERY OF THE VIRGINIA RANGE, NEVADA [J].
ELVIDGE, CD ;
LYON, RJP .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1985, 6 (01) :75-88