Poincare-Hopf and Morse inequalities for Lyapunov graphs

被引:16
作者
Bertolim, MA [1 ]
Mello, MP [1 ]
de Rezende, KA [1 ]
机构
[1] Univ Estadual Campinas, Inst Matemat Estat & Computacao Cientifica, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1017/S0143385704000483
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lyapunov graphs carry dynamical information of gradient-like flows as well as topological information of their phase space which is taken to be a closed orientable n-manifold. In this paper we will show that an abstract Lyapunov graph L(h(0), . . . , h(n), kappa) in dimension n greater than 2, with cycle number kappa, satisfies the Poincare-Hopf inequalities if and only if it satisfies the Morse inequalities and the first Betti number, gamma(1), is greater than or equal to kappa. We also show a continuation theorem for abstract Lyapunov graphs with the presence of cycles. Finally, a family of Lyapunov graphs L(h(0), . . . , h(n), kappa) with fixed pre-assigned data (h(0), . . . , h(n), kappa) is associated with the Morse polytope, P-kappa(h(0), . . . , h(n)), determined by the Morse inequalities for the given data.
引用
收藏
页码:1 / 39
页数:39
相关论文
共 13 条