A discrete Boltzmann equation based on hexagons

被引:12
作者
Andallah, LS [1 ]
Babovsky, H [1 ]
机构
[1] Tech Univ Ilmenau, Inst Math, D-98693 Ilmenau, Germany
关键词
Boltzmann equation; discrete velocity model;
D O I
10.1142/S0218202503003021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop the theory of a Boltzmann equation which is based on a hexagonal discretization of the velocity space. We prove that such a model contains all the basic features of classical kinetic theory, like collision invariants, H-theorem, equilibrium solutions, features of the linearized problem etc. This theory includes the infinite as well as finite hexagonal grids which may be used for numerical purposes.
引用
收藏
页码:1537 / 1563
页数:27
相关论文
共 15 条
[1]  
ARKERYD L, 1972, ARCH RATION MECH AN, V45, P1
[2]   Kinetic boundary layers: on the adequate discretization of the Boltzmann collision operator [J].
Babovsky, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 110 (02) :225-239
[3]   A kinetic multiscale model [J].
Babovsky, H .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2002, 12 (03) :309-331
[4]  
BABOVSKY H, 2001, HIERARCHIES REDUCIBL
[5]  
BABOVSKY H, 2002, UNPUB 9 INT C HYP PR
[6]  
BABOVSKY H, 2000, UNPUB REDUCIBLE KINE
[7]  
Babovsky Hans, 1998, Die Boltzmann-Gleichung: Modellbildung-Numerik-Anwendungen
[8]  
Cercignani C, 1988, BOLTZMANN EQUATION I
[9]  
Cercignani C, 1994, MATH THEORY DILUTE G
[10]  
Gatignol R, 1975, SPRINGER LECT NOTES, V36