A kinetic multiscale model

被引:7
作者
Babovsky, H [1 ]
机构
[1] Tech Univ Ilmenau, Inst Math, D-98684 Ilmenau, Germany
关键词
D O I
10.1142/S0218202502001611
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a system of kinetic equations which realize the Broadwell model on a variety of scales. For a 16-velocity model we verify constraints giving rise to "realistic" Euler equations. Applications to rarefied flow dynamics are developed.
引用
收藏
页码:309 / 331
页数:23
相关论文
共 19 条
[1]  
ANDRIES P, 2000, UMERICAL COMP BOLTZM
[2]   Discretization and numerical schemes for steady kinetic model equations [J].
Babovsky, H .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 35 (1-2) :29-40
[3]   Kinetic boundary layers: on the adequate discretization of the Boltzmann collision operator [J].
Babovsky, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 110 (02) :225-239
[4]  
BABOVSKY H, 2000, UNPUB REDUCIBLE KINE
[5]   Fast deterministic method of solving the Boltzmann equation for hard spheres [J].
Bobylev, AV ;
Rjasanow, S .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 1999, 18 (05) :869-887
[6]   Numerical solution of the Boltzmann Equation using a fully conservative difference scheme based on the Fast Fourier Transform [J].
Bobylev, AV ;
Rjasanow, S .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (3-5) :289-310
[7]   SHOCK STRUCTURE IN A SIMPLE DISCRETE VELOCITY GAS [J].
BROADWELL, JE .
PHYSICS OF FLUIDS, 1964, 7 (08) :1243-1247
[8]  
Cercignani C, 1988, BOLTZMANN EQUATION I
[9]   NUMERICAL PASSAGE FROM KINETIC TO FLUID EQUATIONS [J].
CORON, F ;
PERTHAME, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) :26-42
[10]   Discrete model collision operators of Boltzmann type [J].
Görsch, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 104 (02) :145-162