Cellular retinol-binding protein-I inhibits PI3K/Akt signaling through a retinoic acid receptor-dependent mechanism that regulates p85-p110 heterodimerization

被引:46
作者
Farias, EF [1 ]
Marzan, C [1 ]
Mira-y-Lopez, R [1 ]
机构
[1] CUNY Mt Sinai Sch Med, Dept Med, New York, NY 10029 USA
关键词
breast cancer; vitamin A; differentiation; anoikis; SV40; T47D;
D O I
10.1038/sj.onc.1208347
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Downregulation of the cellular retinol-binding protein-I (CRBP-I) occurs in breast and other human cancers, but its significance is not well understood. Recently, we showed that restoration of CRBP-I expression in transformed MTSV1-7 breast epithelial cells increased retinoic receptor activity, inhibited anoikis, promoted acinar differentiation and inhibited tumorigenicity, suggesting that CRBP-I suppresses tumor progression. However, the mechanism underlying these effects of CRBP-I was not elucidated. Here we demonstrate, using genetic and pharmacological approaches, that CRBP-I inhibits, in a retinoic acid receptor-dependent manner, the PI3K/Akt survival pathway. Inhibition of PI3K/Akt was necessary and sufficient to explain the antitumor effects of CRBP-I and was mediated by decreased p85 regulatory and p110 catalytic subunit heterodimerization. We present evidence consistent with the idea that this effect is due to CRBP-I inhibition of p85 phosphorylation at Y688. To our knowledge, this is the first demonstration of PI3K regulation at the level of p85-p110 heterodimerization. These findings lead us to hypothesize that CRBP-I downregulation in cancer promotes tumor progression through inhibition of retinoic acid receptor activity and derepression of PI3K/Akt signaling via a novel mechanism.
引用
收藏
页码:1598 / 1606
页数:9
相关论文
共 40 条
[1]   Src mediates prolactin-dependent proliferation of T47D and MCF7 cells via the activation of focal adhesion kinase/Erk1/2 and phosphatidylinositol 3-kinase pathways [J].
Acosta, JJ ;
Muñoz, RM ;
González, L ;
Subtil-Rodríguez, A ;
Domínguez-Cáceres, MA ;
García-Martínez, JM ;
Calcabrini, A ;
Lazaro-Trueba, I ;
Martín-Pérez, J .
MOLECULAR ENDOCRINOLOGY, 2003, 17 (11) :2268-2282
[2]   A RETINOIC ACID RECEPTOR-ALPHA ANTAGONIST SELECTIVELY COUNTERACTS RETINOIC ACID EFFECTS [J].
APFEL, C ;
BAUER, F ;
CRETTAZ, M ;
FORNI, L ;
KAMBER, M ;
KAUFMANN, F ;
LEMOTTE, P ;
PIRSON, W ;
KLAUS, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (15) :7129-7133
[3]   EFFICIENT IMMORTALIZATION OF LUMINAL EPITHELIAL-CELLS FROM HUMAN MAMMARY-GLAND BY INTRODUCTION OF SIMIAN VIRUS-40 LARGE TUMOR-ANTIGEN WITH A RECOMBINANT RETROVIRUS [J].
BARTEK, J ;
BARTKOVA, J ;
KYPRIANOU, N ;
LALANI, EN ;
STASKOVA, Z ;
SHEARER, M ;
CHANG, S ;
TAYLORPAPADIMITRIOU, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (09) :3520-3524
[4]   Tyrosine kinase signalling in breast cancer - Epidermal growth factor receptor and c-Src interactions in breast cancer [J].
Biscardi, JS ;
Ishizawar, RC ;
Silva, CM ;
Parsons, SJ .
BREAST CANCER RESEARCH, 2000, 2 (03) :203-210
[5]   Advances in protein kinase B signalling:: AKTion on multiple fronts [J].
Brazil, DP ;
Yang, ZZ ;
Hemmings, BA .
TRENDS IN BIOCHEMICAL SCIENCES, 2004, 29 (05) :233-242
[6]   The phosphoinositide 3-kinase pathway [J].
Cantley, LC .
SCIENCE, 2002, 296 (5573) :1655-1657
[7]   New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase AKT pathway [J].
Cantley, LC ;
Neel, BG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (08) :4240-4245
[8]   Small GTPases and tyrosine kinases coregulate a molecular switch in the phosphoinositide 3-kinase regulatory subunit [J].
Chan, TO ;
Rodeck, U ;
Chan, AM ;
Kimmelman, AC ;
Rittenhouse, SE ;
Panayotou, G ;
Tsichlis, PN .
CANCER CELL, 2002, 1 (02) :181-191
[9]   Tyrosine phosphorylation of p85 relieves its inhibitory activity on phosphatidylinositol 3-kinase [J].
Cuevas, BD ;
Lu, YL ;
Mao, ML ;
Zhang, JY ;
LaPushin, R ;
Siminovitch, K ;
Mills, GB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (29) :27455-27461
[10]   Akt activation disrupts mammary acinar architecture and enhances proliferation in an mTOR-dependent manner [J].
Debnath, J ;
Walker, SJ ;
Brugge, JS .
JOURNAL OF CELL BIOLOGY, 2003, 163 (02) :315-326