Mechanism involved in generating the carboxyl-terminal half topology of P-glycoprotein

被引:11
作者
Han, ES [1 ]
Zhang, JT [1 ]
机构
[1] Univ Texas, Med Branch, Dept Physiol & Biophys, Galveston, TX 77555 USA
关键词
D O I
10.1021/bi980702p
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
P-Glycoprotein (Pgp) is a polytopic membrane protein that consists of a tandem repeat of a transmembrane (TM) domain followed by a nucleotide-binding domain. For the carboxyl-terminal half (C-half) of Pgp, at least three different topological orientations have been observed. One major difference between these topologies is reflected in the membrane insertion property of TM8, which is predicted to (1) function as a stop-transfer sequence, (2) lack stop-transfer activity, or (3) function as a signal-anchor sequence. To understand the mechanism involved in generating multiple topological forms for the C-half of Pgp, we investigated the membrane insertion properties of TM segments using the Chinese hamster pgpl Pgp as a model protein in a cell-free system. We found that TM8 alone or in the presence of TM7 functions as a signal-anchor sequence to insert into membranes with a cytoplasmic amino terminus and an extra-cytoplasmic carboxyl terminus. However, TM8 displayed stop-transfer activity when linked to the C-terminal end of the signal-anchor sequence, TM1. In addition, the membrane orientation of TM8 was found to be regulated by the charge distribution flanking TM8. Interestingly, we found that mammalian and wheat germ ribosomes differentially regulate the signal-anchor and stop-transfer properties of TM8, We conclude that the unique topogenic properties of TM8 direct the generation of multiple C-half topological orientations.
引用
收藏
页码:11996 / 12004
页数:9
相关论文
共 29 条
[1]  
BEJA O, 1995, J BIOL CHEM, V270, P12351
[2]   INTRACELLULAR PROTEIN TOPOGENESIS [J].
BLOBEL, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1980, 77 (03) :1496-1500
[3]   Transmembrane orientation of signal-anchor proteins is affected by the folding state but not the size of the N-terminal domain [J].
Denzer, AJ ;
Nabholz, CE ;
Spiess, M .
EMBO JOURNAL, 1995, 14 (24) :6311-6317
[4]   ISOLATION OF INTRACELLULAR MEMBRANES BY MEANS OF SODIUM-CARBONATE TREATMENT - APPLICATION TO ENDOPLASMIC-RETICULUM [J].
FUJIKI, Y ;
HUBBARD, AL ;
FOWLER, S ;
LAZAROW, PB .
JOURNAL OF CELL BIOLOGY, 1982, 93 (01) :97-102
[5]   Topological rules for membrane protein assembly in eukaryotic cells [J].
Gafvelin, G ;
Sakaguchi, M ;
Andersson, H ;
vonHeijne, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (10) :6119-6127
[6]   BIOCHEMISTRY OF MULTIDRUG-RESISTANCE MEDIATED BY THE MULTIDRUG TRANSPORTER [J].
GOTTESMAN, MM ;
PASTAN, I .
ANNUAL REVIEW OF BIOCHEMISTRY, 1993, 62 :385-427
[7]   PREDICTING THE ORIENTATION OF EUKARYOTIC MEMBRANE-SPANNING PROTEINS [J].
HARTMANN, E ;
RAPOPORT, TA ;
LODISH, HF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (15) :5786-5790
[8]  
HEDGE RS, 1996, CELL, V85, P217
[9]   Protein translocation at the ER membrane: A complex process becomes more so [J].
Johnson, AE .
TRENDS IN CELL BIOLOGY, 1997, 7 (03) :90-95
[10]   Transmembrane organization of mouse P-glycoprotein determined by epitope insertion and immunofluorescence [J].
Kast, C ;
Canfield, V ;
Levenson, R ;
Gros, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (16) :9240-9248