Effects of electrode wettabilities on liquid water behaviours in PEM fuel cell cathode

被引:69
作者
Jiao, Kui [1 ]
Zhou, Biao [1 ]
机构
[1] Univ Windsor, Dept Mech Automot & Mat Engn, Windsor, ON N9B 3P4, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
water management; wettability; static contact angle; gas diffusion layer (GDL); CFD; FLUENT;
D O I
10.1016/j.jpowsour.2007.09.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Liquid water transport is one of the key challenges for water management in a proton exchange membrane (PEM) fuel cell. Investigation of the air-water flow patterns inside fuel cell gas flow channels with gas diffusion layer (GDL) would provide valuable information that could be used in fuel cell design and optimization. This paper presents numerical investigations of air-water flow across an innovative GDL with catalyst layer and serpentine channel on PEM fuel cell cathode by use of a commercial Computational Fluid Dynamics (CFD) software package FLUENT. Different static contact angles (hydrophilic or hydrophobic) were applied to the electrode (GDL and catalyst layer). The results showed that different wettabilities of cathode electrode could affect liquid water flow patterns significantly, thus influencing on the performance of PEM fuel cells. The detailed flow patterns of liquid water were shown, several gas flow problems were observed, and some useful suggestions were given through investigating the flow patterns. (c) 2007 Elsevier B.V All rights reserved.
引用
收藏
页码:106 / 119
页数:14
相关论文
共 37 条
[1]   Analysis of coupled proton and water transport in a PEM fuel cell using the binary friction membrane model [J].
Carnes, B. ;
Djilali, N. .
ELECTROCHIMICA ACTA, 2006, 52 (03) :1038-1052
[2]   The scaling behavior of flow patterns: a model investigation [J].
Cha, SW ;
O'Hayre, R ;
Saito, Y ;
Prinz, FB .
JOURNAL OF POWER SOURCES, 2004, 134 (01) :57-71
[3]   Interaction between the diffusion layer and the flow field of polymer electrolyte fuel cells -: experiments and simulation studies [J].
Dohle, H ;
Jung, R ;
Kimiaie, N ;
Mergel, J ;
Müller, M .
JOURNAL OF POWER SOURCES, 2003, 124 (02) :371-384
[4]   Three-dimensional numerical simulation of straight channel PEM fuel cells [J].
Dutta, S ;
Shimpalee, S ;
Van Zee, JW .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (02) :135-146
[5]  
*FLUENT INC, 2005, FLUENT 6 2 US GUID
[6]   Modeling of porous membranes for molten carbonate fuel cells [J].
Freni, S ;
Maggio, G ;
Passalacqua, E .
MATERIALS CHEMISTRY AND PHYSICS, 1997, 48 (03) :199-206
[7]   Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields [J].
He, WS ;
Yi, JS ;
Nguyen, TV .
AICHE JOURNAL, 2000, 46 (10) :2053-2064
[8]   Optimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques [J].
Hontañón, E ;
Escudero, MJ ;
Bautista, C ;
García-Ybarra, PL ;
Daza, L .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :363-368
[9]   Liquid water transport in parallel serpentine channels with manifolds on cathode side of a PEM fuel cell stack [J].
Jiao, K ;
Zhou, B ;
Quan, P .
JOURNAL OF POWER SOURCES, 2006, 154 (01) :124-137
[10]   Innovative gas diffusion layers and their water removal characteristics in PEM fuel cell cathode [J].
Jiao, Kui ;
Zhou, Biao .
JOURNAL OF POWER SOURCES, 2007, 169 (02) :296-314