Carbon nanotubes and fullerites in high-energy and X-ray physics

被引:87
作者
Artru, X [1 ]
Fomin, SP
Shul'ga, NF
Ispirian, KA
Zhevago, NK
机构
[1] CNRS, Inst Phys Nucl Lyon, IN2P3, F-69622 Villeurbanne, France
[2] Univ Lyon 1, F-69622 Villeurbanne, France
[3] Kharkov Phys & Technol Inst, Natl Sci Ctr, Akhiezer Inst Theoret Phys, UA-61108 Kharkov, Ukraine
[4] Yerevan Phys Inst, Dept Theoret Phys, Yerevan 375036, Armenia
[5] IV Kurchatov Atom Energy Inst, Inst High Technol & Expt Machinery, Russian Res Ctr, Moscow 123182, Russia
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 2005年 / 412卷 / 2-3期
关键词
relativistic electron and positron beams; fullerenes; nanotubes; diffraction; channeling; X-ray and gamma radiation;
D O I
10.1016/j.physrep.2005.02.002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is demonstrated that the unique structures of carbon nanotubes and single-crystals Of C-60 fullerenes may have applications to X-ray, neutron and high-energy particle physics, based on channeling, Bragg diffraction and coherent radiation. These are reviewed, pointing out the peculiarities and advantages of nanocrystals compared to ordinary crystals. New applications are explored: X-rays and neutron channeling, undulator radiation in periodically bent nanotubes, "channeled" transition radiation. Quantum and classical channeling, channeling in bent nanocrystals, Bragg scattering of X-rays and neutrons, channeling radiation, coherent bremsstrahlung, parametric X-ray and nanotube undulator radiation are particularly studied using both analytical and Monte-Carlo methods. Continuous potentials, electron densities, transverse energy levels, and spectra of various types of coherent radiation are calculated. Large dechanneling lengths of positive particles, bending efficiencies, reflecting coefficients of soft X-rays and PXR yields are predicted. Principles of particle detectors using photo- and secondary electron emissions are discussed. (c) 2005 Published by Elsevier B.V.
引用
收藏
页码:89 / 189
页数:101
相关论文
共 136 条
[31]   Nanotube diameter optimal for channeling of high-energy particle beam [J].
Biryukov, VM ;
Bellucci, S .
PHYSICS LETTERS B, 2002, 542 (1-2) :111-115
[32]   Ultrahard and superhard phases of fullerite C60:: comparison with diamond on hardness and wear [J].
Blank, V ;
Popov, M ;
Pivovarov, G ;
Lvova, N ;
Gogolinsky, K ;
Reshetov, V .
DIAMOND AND RELATED MATERIALS, 1998, 7 (2-5) :427-431
[33]   Phase transformations in solid C-60 at high-pressure-high-temperature treatment and the structure of 3D polymerized fullerites [J].
Blank, VD ;
Buga, SG ;
Serebryanaya, NR ;
Dubitsky, GA ;
Sulyanov, SN ;
Popov, MY ;
Denisov, VN ;
Ivlev, AN ;
Mavrin, BN .
PHYSICS LETTERS A, 1996, 220 (1-3) :149-157
[34]   Field emission from carbon nanotubes:: the first five years [J].
Bonard, JM ;
Kind, H ;
Stöckli, T ;
Nilsson, LA .
SOLID-STATE ELECTRONICS, 2001, 45 (06) :893-914
[35]   Field emission from carbon nanotubes:: perspectives for applications and clues to the emission mechanism [J].
Bonard, JM ;
Salvetat, JP ;
Stöckli, T ;
Forró, L ;
Châtelain, A .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1999, 69 (03) :245-254
[36]   How narrow is the linewidth of parametric x-ray radiation? [J].
Brenzinger, KH ;
Limburg, B ;
Backe, H ;
Dambach, S ;
Euteneuer, H ;
Hagenbuck, F ;
Herberg, C ;
Kaiser, KH ;
Kettig, O ;
Kube, G ;
Lauth, W ;
Schope, H ;
Walcher, T .
PHYSICAL REVIEW LETTERS, 1997, 79 (13) :2462-2465
[37]  
Chang R.K., 1982, Surface Enhanced Raman Scattering
[38]   Electrolytic conversion of graphite to carbon nanotubes in fused salts [J].
Chen, GZ ;
Fan, XD ;
Luget, A ;
Shaffer, MSP ;
Fray, DJ ;
Windle, AH .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1998, 446 (1-2) :1-6
[39]   ONE-BODY ELECTRON DYNAMICS IN A FREE-ELECTRON LASER [J].
COLSON, WB .
PHYSICS LETTERS A, 1977, 64 (02) :190-192
[40]   ELASTIC ELECTRON SCATTERING AMPLITUDES FOR NEUTRAL ATOMS CALCULATED USING PARTIAL WAVE METHOD AT 10 40 70 AND 100 KV FOR Z=1 TO Z=54 [J].
COX, HL ;
BONHAM, RA .
JOURNAL OF CHEMICAL PHYSICS, 1967, 47 (08) :2599-&