A pinching estimate for solutions of the linearized Ricci flow system on 3-manifolds

被引:23
作者
Anderson, G [1 ]
Chow, B
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
D O I
10.1007/s00526-003-0212-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:1 / 12
页数:12
相关论文
共 16 条
[1]   Constrained and linear Harnack inequalities for parabolic equations [J].
Chow, B ;
Hamilton, RS .
INVENTIONES MATHEMATICAE, 1997, 129 (02) :213-238
[2]  
Chow B, 2002, J DIFFER GEOM, V60, P1
[3]  
Chow B., 1998, J PARTIAL DIFFERENTI, V11, P137
[4]  
Chow B, 1996, MATH RES LETT, V3, P549
[5]  
DETURCK DM, 1983, J DIFFER GEOM, V18, P157
[6]   Stability of the Ricci flow at Ricci-flat metrics [J].
Guenther, C ;
Isenberg, J ;
Knopf, D .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2002, 10 (04) :741-777
[7]   The Weyl functional, de Rham cohomology, and Kahler-Einstein metrics [J].
Gursky, MJ .
ANNALS OF MATHEMATICS, 1998, 148 (01) :315-337
[8]  
Hamilton R., 1997, COMMUN ANAL GEOM, V5, P1
[9]  
HAMILTON RS, 1993, J DIFFER GEOM, V37, P225
[10]  
HAMILTON RS, 1986, J DIFFER GEOM, V24, P153