Multiple testing on the directed acyclic graph of gene ontology

被引:61
作者
Goeman, Jelle J. [1 ]
Mansmann, Ulrich [2 ,3 ]
机构
[1] Dept Med Stat, NL-2300 RC Leiden, Netherlands
[2] Univ Munich, Sch Med, IBE, D-80539 Munich, Germany
[3] Univ Munich, Dept Stat, D-80539 Munich, Germany
关键词
EXPRESSION DATA; FUNCTIONAL-GROUPS; GLOBAL TEST; ASSOCIATION; SURVIVAL; PATHWAY;
D O I
10.1093/bioinformatics/btm628
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Current methods for multiplicity adjustment do not make use of the graph structure of Gene Ontology (GO) when testing for association of expression profiles of GO terms with a response variable. Results: We propose a multiple testing method, called the focus level procedure, that preserves the graph structure of Gene Ontology (GO). The procedure is constructed as a combination of a Closed Testing procedure with Holm's method. It requires a user to choose a 'focus level' in the GO graph, which reflects the level of specificity of terms in which the user is most interested. This choice also determines the level in the GO graph at which the procedure has most power. We prove that the procedure strongly controls the family-wise error rate without any additional assumptions on the joint distribution of the test statistics used. We also present an algorithm to calculate multiplicity-adjusted P-values. Because the focus level procedure preserves the structure of the GO graph, it does not generally preserve the ordering of the raw P-values in the adjusted P-values.
引用
收藏
页码:537 / 544
页数:8
相关论文
共 26 条
[1]   Improved scoring of functional groups from gene expression data by decorrelating GO graph structure [J].
Alexa, Adrian ;
Rahnenfuehrer, Joerg ;
Lengauer, Thomas .
BIOINFORMATICS, 2006, 22 (13) :1600-1607
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]   Improving gene set analysis of microarray data by SAM-GS [J].
Dinu, Irina ;
Potter, John D. ;
Mueller, Thomas ;
Liu, Qi ;
Adewale, Adeniyi J. ;
Jhangri, Gian S. ;
Einecke, Gunilla ;
Famulski, Konrad S. ;
Halloran, Philip ;
Yasui, Yutaka .
BMC BIOINFORMATICS, 2007, 8 (1)
[5]   Multiple hypothesis testing in microarray experiments [J].
Dudoit, S ;
Shaffer, JP ;
Boldrick, JC .
STATISTICAL SCIENCE, 2003, 18 (01) :71-103
[6]  
GENTRY J, 2005, RGRAPHVIZ PROVIDES P
[7]   Analyzing gene expression data in terms of gene sets:: methodological issues [J].
Goeman, Jelle J. ;
Buehlmann, Peter .
BIOINFORMATICS, 2007, 23 (08) :980-987
[8]   Testing association of a pathway with survival using gene expression data [J].
Goeman, JJ ;
Oosting, J ;
Cleton-Jansen, AM ;
Anninga, JK ;
van Houwelingen, HC .
BIOINFORMATICS, 2005, 21 (09) :1950-1957
[9]   A global test for groups of genes: testing association with a clinical outcome [J].
Goeman, JJ ;
van de Geer, SA ;
de Kort, F ;
van Houwelingen, HC .
BIOINFORMATICS, 2004, 20 (01) :93-99
[10]  
Grossmann S, 2006, LECT NOTES COMPUT SC, V3909, P85