Automated Multiplexed ECL Immunoarrays for Cancer Biomarker Proteins

被引:106
作者
Kadimisetty, Karteek [1 ]
Malla, Spundana [1 ]
Sardesai, Naimish P. [1 ]
Joshi, Amit A. [1 ]
Faria, Ronaldo C. [4 ]
Lee, Norman H. [5 ]
Rusling, James F. [1 ,2 ,3 ]
机构
[1] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA
[2] Univ Connecticut, Ctr Hlth, Dept Cell Biol, Farmington, CT 06032 USA
[3] Natl Univ Ireland Galway, Sch Chem, Galway, Ireland
[4] Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil
[5] George Washington Univ, Dept Physiol & Pharmacol, Washington, DC 20037 USA
关键词
ULTRASENSITIVE DETECTION; PROSTATE-CANCER; AMPLIFICATION; PROTEOME; ARRAYS; VALVES;
D O I
10.1021/acs.analchem.5b00421
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Point-of-care diagnostics based on multiplexed protein measurements face challenges of simple, automated, low-cost, and high-throughput operation-with high sensitivity. Herein, we describe an automated, microprocessor-controlled microfluidic immunoarray for simultaneous multiplexed detection of small protein panels in complex samples. A microfluidic sample/reagent delivery cassette was coupled to a 30-microwell detection array to achieve sensitive detection of four prostate cancer biomarker proteins in serum. The proteins are prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), platelet factor-4 (PF-4), and interlukin-6 (IL-6). The six channel system is driven by integrated mitropumps controlled by an inexpensive programmable microprocessor. The reagent delivery cassette and detection array feature channels made by precision-cut 0.8 mm silicone gaskets. Single-wall carbon nanotube forests were grown in printed microwells on a pyrolytic graphite detection chip and decorated with capture antibodies. The detection chip is housed in a machined microfluidic chamber with a steel metal shim counter electrode and Ag/AgCl reference electrode for electrochemiluminescent (ECL) measurements. The preloaded sample/reagent cassette automatically delivers samples, wash buffers, and ECL RuBPY-silica antibody detection nanoparticles sequentially. An onboard microcontroller controls micropumps, and reagent flow to the detection chamber according to a preset program. Detection employs tripropylamine, a sacrificial reductant, while applying 0.95 V vs Ag/AgCl. Resulting ECL light was measured by a CCD camera. Ultra low detection limits of 10-100 fg mL(-1) were achieved in simultaneous detection of the four protein in 36 min assays. Results for the four proteins in prostate cancer patient serum gave excellent correlation with those from single-protein ELISA.
引用
收藏
页码:4472 / 4478
页数:7
相关论文
共 32 条
[1]   The Use of Magnetic Nanoparticles in Analytical Chemistry [J].
Beveridge, Jacob S. ;
Stephens, Jason R. ;
Williams, Mary Elizabeth .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 4, 2011, 4 :251-273
[2]   Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum [J].
Chikkaveeraiah, Bhaskara V. ;
Mani, Vigneshwaran ;
Patel, Vyomesh ;
Gutkind, J. Silvio ;
Rusling, James F. .
BIOSENSORS & BIOELECTRONICS, 2011, 26 (11) :4477-4483
[3]   Single-Wall Carbon Nanotube Forest Arrays for Immunoelectrochemical Measurement of Four Protein Biomarkers for Prostate Cancer [J].
Chikkaveeraiah, Bhaskara V. ;
Bhirde, Ashwin ;
Malhotra, Ruchika ;
Patel, Vyomesh ;
Gutkind, J. Silvio ;
Rusling, James F. .
ANALYTICAL CHEMISTRY, 2009, 81 (21) :9129-9134
[4]   Commercialization of microfluidic point-of-care diagnostic devices [J].
Chin, Curtis D. ;
Linder, Vincent ;
Sia, Samuel K. .
LAB ON A CHIP, 2012, 12 (12) :2118-2134
[5]   Microfluidics-based diagnostics of infectious diseases in the developing world [J].
Chin, Curtis D. ;
Laksanasopin, Tassaneewan ;
Cheung, Yuk Kee ;
Steinmiller, David ;
Linder, Vincent ;
Parsa, Hesam ;
Wang, Jennifer ;
Moore, Hannah ;
Rouse, Robert ;
Umviligihozo, Gisele ;
Karita, Etienne ;
Mwambarangwe, Lambert ;
Braunstein, Sarah L. ;
van de Wijgert, Janneke ;
Sahabo, Ruben ;
Justman, Jessica E. ;
El-Sadr, Wafaa ;
Sia, Samuel K. .
NATURE MEDICINE, 2011, 17 (08) :1015-U138
[6]   Electrogenerated Chemiluminescence [J].
Forster, Robert J. ;
Bertoncello, Paolo ;
Keyes, Tia E. .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2009, 2 :359-385
[7]   Microfluidic Chips for Point-of-Care Immunodiagnostics [J].
Gervais, Luc ;
de Rooij, Nico ;
Delamarche, Emmanuel .
ADVANCED MATERIALS, 2011, 23 (24) :H151-H176
[8]   Drivers of biodiagnostic development [J].
Giljohann, David A. ;
Mirkin, Chad A. .
NATURE, 2009, 462 (7272) :461-464
[9]   Mass Spectrometry-Based Biomarker Discovery: Toward a Global Proteome Index of Individuality [J].
Hawkridge, Adam M. ;
Muddiman, David C. .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2009, 2 :265-277
[10]   Incorporation of prefabricated screw, pneumatic, and solenoid valves into microfluidic devices [J].
Hulme, S. Elizabeth ;
Shevkoplyas, Sergey S. ;
Whitesides, George M. .
LAB ON A CHIP, 2009, 9 (01) :79-86