Tail posterior probability for inference in pairwise and multiclass gene expression data

被引:15
作者
Bochkina, N. [1 ]
Richardson, S. [1 ]
机构
[1] Imperial Coll, Ctr Biostat, London W2 1PG, England
基金
英国惠康基金;
关键词
Bayesian analysis; compound hypothesis; differential expression; equivalence of Bayesian and frequentist inference; microarray gene expression; multiclass data; tail posterior probability;
D O I
10.1111/j.1541-0420.2007.00807.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the problem of identifying differentially expressed genes in microarray data in a Bayesian framework with a noninformative prior distribution on the parameter quantifying differential expression. We introduce a new rule, tail posterior probability, based on the posterior distribution of the standardized difference, to identify genes differentially expressed between two conditions, and we derive a frequentist estimator of the false discovery rate associated with this rule. We compare it to other Bayesian rules in the considered settings. We show how the tail posterior probability can be extended to testing a compound null hypothesis against a class of specific alternatives in multiclass data.
引用
收藏
页码:1117 / 1125
页数:9
相关论文
共 15 条
[1]  
[Anonymous], 2004, BAYESIAN THEORY
[2]  
[Anonymous], 1990, STAT SCI
[3]  
[Anonymous], 2021, Bayesian Data Analysis
[4]   A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes [J].
Baldi, P ;
Long, AD .
BIOINFORMATICS, 2001, 17 (06) :509-519
[5]   Prior distributions for variance parameters in hierarchical models(Comment on an Article by Browne and Draper) [J].
Gelman, Andrew .
BAYESIAN ANALYSIS, 2006, 1 (03) :515-533
[6]   Bayesian robust inference for differential gene expression in microarrays with multiple samples [J].
Gottardo, R ;
Raftery, AE ;
Yeung, KY ;
Bumgarner, RE .
BIOMETRICS, 2006, 62 (01) :10-18
[7]  
Jeffreys H., 1998, The Theory of Probability
[8]   Bayesian modeling of differential gene expression [J].
Lewin, A ;
Richardson, S ;
Marshall, C ;
Glazier, A ;
Aitman, T .
BIOMETRICS, 2006, 62 (01) :1-9
[9]  
McLachlan G, 2004, ANAL MICROARRAY GENE, DOI 10.1002/047172842X
[10]   Optimal sample size for multiple testing:: The case of gene expression microarrays [J].
Müller, P ;
Parmigiani, G ;
Robert, C ;
Rousseau, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (468) :990-1001