Formation of nanoporous nickel by selective anodic etching of the nobler copper component from electrodeposited nickel-copper alloys

被引:100
作者
Chang, Jeng-Kuei [1 ]
Hsu, Shih-Hsun [2 ]
Sun, I-Wen [2 ]
Tsai, Wen-Ta [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Mat Sci & Engn, Tainan 70101, Taiwan
[2] Natl Cheng Kung Univ, Dept Chem, Tainan 70101, Taiwan
关键词
D O I
10.1021/jp0772474
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The preparation of nanoporous nickel films by electrochemical deposition of Ni-Cu alloy followed by the selective anodic etching of the less-active component (Cu) from the alloy was studied in an aqueous solution containing Cu(II) and Ni(II) at room temperature. Constant potential electrodeposition produced columnar Ni-Cu alloys, in which the Ni content increased as the deposition potential became more negative. X-ray diffraction and Auger mapping results indicate the presence of separated Cu-rich and Ni-rich phases in the alloys, with the Cu-rich phase being more concentrated in the middle of the column and surrounded by the Ni-rich phase. Cyclic voltammetric data indicates that anodic dissolution of nickel is retarded by passivation. By taking advantage of nickel passivation, selective anodic etching of copper from the Ni-Cu alloy produces nanohollow nickel tubes on indium-tin-oxide-coated glass substrates. The nanohollow tube structure obtained in this study is different from the interconnected bicontinuous nanopores that are usually obtained by dealloying the less noble component from a homogeneous solid solution alloy. The nanohollow tubes may have resulted from the fact that multiple phases columnar alloy deposits were produced by the electrodeposition step and from the limited mobility of nickel during the anodic etching step.
引用
收藏
页码:1371 / 1376
页数:6
相关论文
共 24 条
[21]   Evaluation of Raney-nickel cathodes prepared with aluminum powder and titanium hydride powder [J].
Tanaka, S ;
Hirose, N ;
Tanaki, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (07) :2477-2480
[22]   Formation of porous silver by electrochemical alloying/dealloying in a water-insensitive zinc chloride-1-ethyl-3-methyl imidazolium chloride ionic liquid [J].
Yeh, FH ;
Tai, CC ;
Huang, JF ;
Sun, IW .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (11) :5215-5222
[23]   Platinum-plated nanoporous gold: An efficient, low Pt loading electrocatalyst for PEM fuel cells [J].
Zeis, Roswitha ;
Mathur, Anant ;
Fritz, Greg ;
Lee, Joe ;
Erlebacher, Jonah .
JOURNAL OF POWER SOURCES, 2007, 165 (01) :65-72
[24]   ELECTROCHEMICAL DEPOSITION AND STRIPPING OF COPPER, NICKEL AND COPPER-NICKEL ALLOY THIN-FILMS AT A POLYCRYSTALLINE GOLD SURFACE - A COMBINED VOLTAMMETRY-COULOMETRY-ELECTROCHEMICAL QUARTZ-CRYSTAL MICROGRAVIMETRY STUDY [J].
ZHOU, M ;
MYUNG, N ;
CHEN, X ;
RAJESHWAR, K .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1995, 398 (1-2) :5-12