Structural Similarity between the Prion Domain of HET-s and a Homologue Can Explain Amyloid Cross-Seeding in Spite of Limited Sequence Identity

被引:43
作者
Wasmer, Christian [1 ]
Zimmer, Agnes [2 ]
Sabate, Raimon [3 ]
Soragni, Alice [1 ]
Saupe, Sven J. [3 ]
Ritter, Christiane [2 ]
Meier, Beat H. [1 ]
机构
[1] ETH, CH-8093 Zurich, Switzerland
[2] Helmholtz Ctr Infect Res, D-38124 Braunschweig, Germany
[3] Univ Bordeaux 2, CNRS, Lab Genet Mol Champignons, IBGC,UMR 5095, F-33076 Bordeaux, France
关键词
prion; amyloid; fibrils; HET-s protein; FgHET-s protein; SOLID-STATE NMR; RESONANCE ASSIGNMENT; HET-S(218-289) PRION; PROTEIN-STRUCTURE; ALPHA; C-13; POLARIZATION; FIBRILS; ENHANCEMENT; STABILITY;
D O I
10.1016/j.jmb.2010.06.053
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We describe a distant homologue of the fungal HET-s prion, which is found in the fungus Fusarium graminearum. The domain FgHET-s(218-289), which corresponds to the prion domain in HET-s from Podospora anserina, forms amyloid fibrils in vitro and is able to efficiently cross-seed HET-s(218-289) prion formation. We structurally characterize FgHET-s(218-289), which displays 38% sequence identity with HET-s(218-289). Solid-state NMR and hydrogen/deuterium exchange detected by NMR show that the fold and a number of structural details are very similar for the prion domains of the two proteins. This structural similarity readily explains why cross-seeding occurs here in spite of the sequence divergence. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:311 / 325
页数:15
相关论文
共 53 条
[11]   An efficient strategy for assignment of cross-peaks in 3D heteronuclear NOESY experiments [J].
Diercks, T ;
Coles, M ;
Kessler, H .
JOURNAL OF BIOMOLECULAR NMR, 1999, 15 (02) :177-180
[12]   The HET-s prion protein of the filamentous fungus Podospora anserina aggregates in vitro into amyloid-like fibrils [J].
Dos Reis, S ;
Coulary-Salin, B ;
Forge, V ;
Lascu, I ;
Bégueret, J ;
Saupe, SJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (08) :5703-5706
[13]   Comparative modeling for protein structure prediction [J].
Ginalski, K .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2006, 16 (02) :172-177
[14]   PROCESSING OF MULTIDIMENSIONAL NMR DATA WITH THE NEW SOFTWARE PROSA [J].
GUNTERT, P ;
DOTSCH, V ;
WIDER, G ;
WUTHRICH, K .
JOURNAL OF BIOMOLECULAR NMR, 1992, 2 (06) :619-629
[15]   Fast MAS total through-bond correlation spectroscopy [J].
Hardy, EH ;
Verel, R ;
Meier, BH .
JOURNAL OF MAGNETIC RESONANCE, 2001, 148 (02) :459-464
[16]   ADIABATIC PASSAGE HARTMANN-HAHN CROSS-POLARIZATION IN NMR UNDER MAGIC-ANGLE SAMPLE-SPINNING [J].
HEDIGER, S ;
MEIER, BH ;
ERNST, RR .
CHEMICAL PHYSICS LETTERS, 1995, 240 (5-6) :449-456
[17]   Standard conformations of β-arches in β-solenoid proteins [J].
Hennetin, Jerome ;
Jullian, Berangere ;
Steven, Alasdair C. ;
Kajava, Andrey V. .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 358 (04) :1094-1105
[18]   Resonance assignment of 13C/15N labeled solid proteins by two- and three-dimensional magic-angle-spinning NMR [J].
Hong, M .
JOURNAL OF BIOMOLECULAR NMR, 1999, 15 (01) :1-14
[19]   Mapping the core of the β2-microglobulin amyloid fibril by H/D exchange [J].
Hoshino, M ;
Katou, H ;
Hagihara, Y ;
Hasegawa, K ;
Naiki, H ;
Goto, Y .
NATURE STRUCTURAL BIOLOGY, 2002, 9 (05) :332-336
[20]   β-rolls, β-helices, and other β-solenoid proteins [J].
Kajava, Andrey V. ;
Steven, Alasdair C. .
FIBROUS PROTEINS: AMYLOIDS, PRIONS AND BETA PROTEINS, 2006, 73 :55-+