Step-by-step synthesis of non-noble metal electrocatalysts for O2 reduction under proton exchange membrane fuel cell conditions

被引:54
作者
Herranz, Juan [1 ]
Lefevre, Michel [1 ]
Larouche, Nicholas [1 ]
Stansfield, Barry [1 ]
Dodelet, Jean-Pol [1 ]
机构
[1] INRS Energie, Varennes, PQ J3X 1S2, Canada
关键词
D O I
10.1021/jp0764438
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fe-based catalysts for O-2 reduction under proton exchange membrane fuel cell conditions were prepared on a commercial N234 carbon black support using both a "classical" and a step-by-step procedure to determine if parameters other than microporosity and nitrogen loading of the carbon support are important in the synthesis of Fe/N/C electrocatalysts. The "classical" procedure for obtaining Fe/N/C electrocatalysts is to use a single-step synthesis, in which a carbon support loaded with a metal precursor is heat treated at high temperatures (900-950 degrees C) in pure NH3. In the step-by-step procedure, microporosity is first etched into the carbon support followed, if necessary, by the addition of N-bearing functionalities and, last, the loading of the metal precursor. Similar maximum microporous contents can be etched into N234, using either NH3 or O-2 (air). However, unlike O-2 (air), etching with NH3 has the added benefit of creating N-bearing functionalities on the carbon surface. For carbon supports etched in O-2 (air), it is possible to add N-bearing functionalities either by N-2 plasma treatment or by a subsequent, short pyrolysis in NH3. In the case of the multistep procedure, a second heat treatment is essential for activating the catalytic sites. This demonstrates the importance of a third factor controlling the activity of the catalysts. The duration and temperature of the activation step depend on the ambient gas used. This activation step, during which a C-N-x-Fe complex is transformed into a catalytic site, is unapparent in the "classical" procedure. Both "classical" and step-by-step syntheses yield the same maximum catalytic activity when measured using. either the rotating disk electrode method or by fuel cell testing. The similarity in microporous specific area of catalysts made using theses two synthesis methods explains this finding.
引用
收藏
页码:19033 / 19042
页数:10
相关论文
共 45 条
[1]   RRDE study of oxygen reduction on Pt nanoparticles inside Nafion®:: H2O2 production in PEMFC cathode conditions [J].
Antoine, O ;
Durand, R .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (07) :839-844
[2]   Surface modification of polyethylene powder by nitrogen and ammonia low pressure plasma in a fluidized bed reactor [J].
Bretagnol, F ;
Tatoulian, M ;
Arefi-Khonsari, F ;
Lorang, G ;
Amouroux, J .
REACTIVE & FUNCTIONAL POLYMERS, 2004, 61 (02) :221-232
[3]   Thermogravimetry/Mass Spectrometry Investigations on the Formation of Oxygen Reduction Catalysts for PEM Fuel Cells on the Basis of Heat-Treated Iron Phenanthroline Complexes [J].
Bron, M. ;
Fiechter, S. ;
Bogdanoff, P. ;
Tributsch, H. .
FUEL CELLS, 2003, 2 (3-4) :137-142
[4]  
Dodelet J.-P., 2006, N4 MACROCYCLIC METAL, P83, DOI DOI 10.1007/978-0-387-28430-9_3
[5]   Oxidations of iron(II)/(III) by hydrogen peroxide: from aquo to enzyme [J].
Dunford, HB .
COORDINATION CHEMISTRY REVIEWS, 2002, 233 :311-318
[6]   Thermal evolution of the structure and activity of magnetron-sputtered TM-C-N, TM = Fe, Co) oxygen reduction catalysts [J].
Easton, E. Bradley ;
Yang, Ruizhi ;
Bonakdarpour, Arman ;
Dahn, J. R. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (01) :B6-B10
[7]   Fe-C-N oxygen reduction catalysts prepared by combinatorial sputter deposition [J].
Easton, E. Bradley ;
Bonakdarpour, Arman ;
Dahn, J. R. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (10) :A463-A467
[8]   Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs [J].
Gasteiger, HA ;
Kocha, SS ;
Sompalli, B ;
Wagner, FT .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2005, 56 (1-2) :9-35
[9]   HEAT-TREATED POLYACRYLONITRILE-BASED CATALYSTS FOR OXYGEN ELECTROREDUCTION [J].
GUPTA, S ;
TRYK, D ;
BAE, I ;
ALDRED, W ;
YEAGER, E .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1989, 19 (01) :19-27
[10]  
Herrmann I., 2006, ECS T, V3, P211