To measure possible changes in basal and insulin-stimulated phosphotyrosine phosphatase (PTPase) activity in skeletal muscle from insulin-resistant individuals, soluble and particulate muscle fractions were prepared from biopsies taken before and after a 3-h hyperinsulinaemic euglycaemic clamp in eight non-insulin-dependent: diabetic (NIDDM) patients and nine control subjects. We used a sensitive sandwich-immunofluorescence assay and the human insulin receptor as the substrate, PTPase activity was expressed as percentage of dephosphorylation of phosphotyrosyl-residues in immobilized insulin receptors per 2 h incubation time per 83 mu g and 19 mu g muscle fraction protein (soluble and particulate fraction, respectively). In the diabetic soluble muscle fractions, the basal PTPase activity was decreased compared with that of control subjects (11.5 +/- 5.5 vs 27.5 +/- 3.3, p < 0.04, mean +/- SEM). In the particulate muscle fractions from the control subjects, PTPase activity was increased after 3 h hyperinsulinaemia (20.0 +/- 3.2 vs 30.2 +/- 3.6, p < 0.03) and in the corresponding soluble fractions PTPase activity seemed decreased (27.5 +/- 3.3 vs 19.9 +/- 5.9, NS). No effect of insulin on PTPase activity was found in NIDDM patients (25.1 +/- 4.1 vs 27.2 +/- 5.2, 11.5 +/- 5.5 vs 15.1 +/- 4.5 [particulate and soluble fractions], NS). In conclusion, we found that the basal PTPase activity in soluble muscle fractions was decreased in NIDDM patients; furthermore, insulin stimulation was unable to increase PTPase activities in the particulate fractions, as opposed to the effect of insulin in control subjects.