A novel shape-stabilized PCM: Electrospun ultrafine fibers based on lauric acid/polyethylene terephthalate composite

被引:104
作者
Chen, Changzhong [2 ,3 ]
Wang, Linge [2 ]
Huang, Yong [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Chem, State Key Lab Polymer Phys & Chem, Beijing 100080, Peoples R China
[2] Chinese Acad Sci, Guangzhou Inst Chem, Key Lab Cellulose & Lignocellulos Chem, Guangzhou 510650, Guangdong, Peoples R China
[3] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
electrospinning; shape-stabilized PCM; fiber; thermal properties; composite materials;
D O I
10.1016/j.matlet.2008.03.034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, ultrafine fibers of PCM/polymer composites have been developed as a novel shape-stabilized polymer-matrix phase change material (PCM) via electrospinning technique. in this study, ultrafine fibers of lauric acid/polyethylene terephthalate (LA/PET) composite (1:1, w/w) were successfully prepared and characterized by field-emission scanning electron microscopy (FE-SEM), differential scanning calorimetry (DSC) and tensile testing. The results indicated that the electrospun fibers showed smooth surfaces and cylindrical shape with diameters ranging from several tens to several hundreds nanometer, and the latent heat of fusion of the fibers is about 70.76 J/g. Although the tensile properties of the electrospun composite fibers were lower than that of the electrospun pure PET fibers, they showed suitable and competent tensile strength for the potential applications in solar energy storage and thermo-regulating textile. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:3515 / 3517
页数:3
相关论文
共 29 条
[1]   LOW-TEMPERATURE LATENT-HEAT THERMAL-ENERGY STORAGE - HEAT-STORAGE MATERIALS [J].
ABHAT, A .
SOLAR ENERGY, 1983, 30 (04) :313-332
[2]   Poly(ethylene glycol)/acrylic polymer blends for latent heat thermal energy storage [J].
Alkan, Cemil ;
Sari, Ahmet ;
Uzun, Orhan .
AICHE JOURNAL, 2006, 52 (09) :3310-3314
[3]   Microencapsulated phase-change materials as heat transfer media in gas-fluidized beds [J].
Brown, RC ;
Rasberry, JD ;
Overmann, SP .
POWDER TECHNOLOGY, 1998, 98 (03) :217-222
[4]   Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite [J].
Chen, Changzhong ;
Wang, Linge ;
Huang, Yong .
POLYMER, 2007, 48 (18) :5202-5207
[5]   Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning [J].
Ding, B ;
Kimura, E ;
Sato, T ;
Fujita, S ;
Shiratori, S .
POLYMER, 2004, 45 (06) :1895-1902
[6]   A review on phase change energy storage: materials and applications [J].
Farid, MM ;
Khudhair, AM ;
Razack, SAK ;
Al-Hallaj, S .
ENERGY CONVERSION AND MANAGEMENT, 2004, 45 (9-10) :1597-1615
[7]   Hydraulic permeabilities of PET and nylon 6 electrospun fiber webs [J].
Hong, KH ;
Kang, TJ .
JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 100 (01) :167-177
[8]   Preparation of polyethylene-paraffin compound as a form-stable solid-liquid phase change material [J].
Hong, Y ;
Ge, XS .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2000, 64 (01) :37-44
[9]   Solar energy storage using phase change materials [J].
Kenisarin, Murat ;
Mahkamov, Khamid .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2007, 11 (09) :1913-1965
[10]   A review on energy conservation in building applications with thermal storage by latent heat using phase change materials [J].
Khudhair, AM ;
Farid, MM .
ENERGY CONVERSION AND MANAGEMENT, 2004, 45 (02) :263-275