Estimation of unitary quantum operations

被引:53
作者
Ballester, MA [1 ]
机构
[1] Univ Utrecht, Dept Math, NL-3508 TA Utrecht, Netherlands
来源
PHYSICAL REVIEW A | 2004年 / 69卷 / 02期
关键词
D O I
10.1103/PhysRevA.69.022303
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The problem of optimally estimating an unknown unitary quantum operation with the aid of entanglement is addressed. The idea is to prepare an entangled pair, apply the unknown unitary to one of the two parts, and then measure the joint output state. This measurement could be an entangled one or it could be separable (e.g., measurements which can be implemented with local operations and classical communication or LOCC). A comparison is made between these possibilities and it is shown that by using nonseparable measurements one can improve the accuracy of the estimation by a factor of 2(d+1)/d where d is the dimension of the Hilbert space on which U acts.
引用
收藏
页数:6
相关论文
共 10 条
[1]   Optimal estimation of quantum dynamics -: art. no. 050302 [J].
Acín, A ;
Jané, E ;
Vidal, G .
PHYSICAL REVIEW A, 2001, 64 (05) :4
[2]  
[Anonymous], 2001, PHYS REV A
[3]   Quantum nonlocality without entanglement [J].
Bennett, CH ;
DiVincenzo, DP ;
Fuchs, CA ;
Mor, T ;
Rains, E ;
Shor, PW ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW A, 1999, 59 (02) :1070-1091
[4]   Maximum efficiency of a linear-optical Bell-state analyzer [J].
Calsamiglia, J ;
Lütkenhaus, N .
APPLIED PHYSICS B-LASERS AND OPTICS, 2001, 72 (01) :67-71
[5]   Exploiting quantum parallelism of entanglement for a complete experimental quantum characterization of a single-qubit device [J].
De Martini, F ;
Mazzei, A ;
Ricci, M ;
D'Ariano, GM .
PHYSICAL REVIEW A, 2003, 67 (06)
[6]   State estimation for large ensembles [J].
Gill, RD ;
Massar, S .
PHYSICAL REVIEW A, 2000, 61 (04) :16
[7]  
Holevo A., 1982, Probabilistic and Statistical Aspects of Quantum Theory
[8]   Quantum teleportation of a polarization state with a complete Bell state measurement [J].
Kim, YH ;
Kulik, SP ;
Shih, Y .
PHYSICAL REVIEW LETTERS, 2001, 86 (07) :1370-1373
[9]   A new approach to the Cramer-Rao-type bound of the pure-state model [J].
Matsumoto, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (13) :3111-3123
[10]  
Nielsen Michael A, 2002, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744