The Caulobacter crescentus CgtAC protein cosediments with the free 50S ribosomal subunit

被引:64
作者
Lin, B [1 ]
Thayer, DA [1 ]
Maddock, JR [1 ]
机构
[1] Univ Michigan, Dept Mol Cellular & Dev Biol, Ann Arbor, MI 48109 USA
关键词
D O I
10.1128/JB.186.2.481-489.2004
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The Obg family of GTPases is widely conserved and predicted to play an as-yet-unknown role in translation. Recent reports provide circumstantial evidence that both eukaryotic and prokaryotic Obg proteins are associated with the large ribosomal subunit. Here we provide direct evidence that the Caulobacter crescentus CgtA(C) protein is associated with the free large (50S) ribosomal subunit but not with 70S monosomes or with translating ribosomes. In contrast to the Bacillus subtilis and Escherichia coli proteins, CgtA, does not fractionate in a large complex by gel filtration, indicating a moderately weak association with the 50S subunit. Moreover, binding of CgtA(C) to the 50S particle is sensitive to salt concentration and buffer composition but not guanine nucleotide occupancy of CgtA(C). Assays of epitope-tagged wild-type and mutant variants of CgtA, indicate that the C terminus of CgtA(C) is critical for 50S association. Interestingly, the addition of a C-terminal epitope tag also affected the ability of various cgtA(C) alleles to function in vivo. Depletion of CgtA(C) led to perturbations in the polysome profile, raising the possibility that CgtA, is involved in ribosome assembly or stability.
引用
收藏
页码:481 / 489
页数:9
相关论文
共 53 条
[1]   Identification of a 60S preribosomal particle that is closely linked to nuclear export [J].
Bassler, J ;
Grandi, P ;
Gadal, O ;
Lessmann, T ;
Petfalski, E ;
Tollervey, D ;
Lechner, J ;
Hurt, E .
MOLECULAR CELL, 2001, 8 (03) :517-529
[2]   Structural and biochemical analysis of the Obg GTP binding protein [J].
Buglino, J ;
Shen, V ;
Hakimian, P ;
Lima, CD .
STRUCTURE, 2002, 10 (11) :1581-1592
[3]   The FtsJ/RrmJ heat shock protein of Escherichia coli is a 23 S ribosomal RNA methyltransferase [J].
Caldas, T ;
Binet, E ;
Bouloc, P ;
Costa, A ;
Desgres, J ;
Richarme, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (22) :16414-16419
[4]   Function of the universally conserved bacterial GTPases [J].
Caldon, CE ;
March, PE .
CURRENT OPINION IN MICROBIOLOGY, 2003, 6 (02) :135-139
[5]   Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function [J].
Caldon, CE ;
Yoong, P ;
March, PE .
MOLECULAR MICROBIOLOGY, 2001, 41 (02) :289-297
[6]   Revisiting the stringent response, ppGpp and starvation signaling [J].
Chatterji, D ;
Ojha, AK .
CURRENT OPINION IN MICROBIOLOGY, 2001, 4 (02) :160-165
[7]   PHYSIOLOGICAL AND GENETIC RESPONSES OF BACTERIA TO OSMOTIC-STRESS [J].
CSONKA, LN .
MICROBIOLOGICAL REVIEWS, 1989, 53 (01) :121-147
[8]  
Culver GM, 2000, METHOD ENZYMOL, V318, P446
[9]  
Czyz A, 2001, MICROBIOL-UK, V147, P183
[10]   Methods for isolation and analysis of polyribosomes [J].
Davies, E ;
Abe, S .
METHODS IN CELL BIOLOGY, VOL 50: METHODS IN PLANT CELL BIOLOGY, PT B, 1995, 50 :209-222