Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens

被引:3078
作者
Glazebrook, J [1 ]
机构
[1] Univ Minnesota, Dept Plant Biol, St Paul, MN 55108 USA
关键词
Peronospora; Pseudomonas; Erysiphe; Alternaria; Botrytis;
D O I
10.1146/annurev.phyto.43.040204.135923
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
It has been suggested that effective defense against biotrophic pathogens is largely due to programmed cell death in the host, and to associated activation of defense responses regulated by the salicylic acid-dependent pathway. In contrast, necrotrophic pathogens benefit from host cell death, so they are not limited by cell death and salicylic acid-dependent defenses, but rather by a different set of defense responses activated by jasmonic acid and ethylene signaling. This review summarizes results from Arabidopsis-pathogen systems regarding the contributions of various defense responses to resistance to several biotrophic and necrotrophic pathogens. While the model above seems generally correct, there are exceptions and additional complexities.
引用
收藏
页码:205 / 227
页数:23
相关论文
共 135 条
[1]   Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis [J].
Aarts, N ;
Metz, M ;
Holub, E ;
Staskawicz, BJ ;
Daniels, MJ ;
Parker, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (17) :10306-10311
[2]   Strategies used by bacterial pathogens to suppress plant defenses [J].
Abramovitch, RB ;
Martin, GB .
CURRENT OPINION IN PLANT BIOLOGY, 2004, 7 (04) :356-364
[3]   Comparison of Erysiphe cichoracearum and E-cruciferarum and a survey of 360 Arabidopsis thaliana accessions for resistance to these two powdery mildew pathogens [J].
Adam, L ;
Ellwood, S ;
Wilson, I ;
Saenz, G ;
Xiao, S ;
Oliver, RP ;
Turner, JG ;
Somerville, S .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1999, 12 (12) :1031-1043
[4]  
Agrios G.E., 2007, Plant Pathology, V5th
[5]   Type III secretion system effector proteins: Double agents in bacterial disease and plant defense [J].
Alfano, JR ;
Collmer, A .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2004, 42 :385-414
[6]   MAP kinase signalling cascade in Arabidopsis innate immunity [J].
Asai, T ;
Tena, G ;
Plotnikova, J ;
Willmann, MR ;
Chiu, WL ;
Gomez-Gomez, L ;
Boller, T ;
Ausubel, FM ;
Sheen, J .
NATURE, 2002, 415 (6875) :977-983
[7]   Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4 [J].
Axtell, MJ ;
Staskawicz, BJ .
CELL, 2003, 112 (03) :369-377
[8]   Plant disease resistance protein signaling: NBS-LRR proteins and their partners [J].
Belkhadir, Y ;
Subramaniam, R ;
Dangl, JL .
CURRENT OPINION IN PLANT BIOLOGY, 2004, 7 (04) :391-399
[9]   Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1 [J].
Belkhadir, Y ;
Nimchuk, Z ;
Hubert, DA ;
Mackey, D ;
Dangl, JL .
PLANT CELL, 2004, 16 (10) :2822-2835
[10]   Pseudomonas syringae phytotoxins:: Mode of action, regulation, and biosynthesis by peptide and polyketide synthetases [J].
Bender, CL ;
Alarcón-Chaidez, F ;
Gross, DC .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1999, 63 (02) :266-+