Strategies used by bacterial pathogens to suppress plant defenses

被引:175
作者
Abramovitch, RB
Martin, GB
机构
[1] Cornell Univ, Boyce Thompson Inst Plant Res, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Plant Pathol, Ithaca, NY 14853 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
D O I
10.1016/j.pbi.2004.05.002
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant immune systems effectively prevent infections caused by the majority of microbial pathogens that are encountered by plants. However, successful pathogens have evolved specialized strategies to suppress plant defense responses and induce disease susceptibility in otherwise resistant hosts. Recent advances reveal that phytopathogenic bacteria use type III effector proteins, toxins, and other factors to inhibit host defenses. Host processes that are targeted by bacteria include programmed cell death, cell wall-based defense, hormone signaling, the expression of defense genes, and other basal defenses. The discovery of plant defenses that are vulnerable to pathogen attack has provided new insights into mechanisms that are essential for both bacterial pathogenesis and plant disease resistance.
引用
收藏
页码:356 / 364
页数:9
相关论文
共 56 条
[1]   Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death [J].
Abramovitch, RB ;
Kim, YJ ;
Chen, SR ;
Dickman, MB ;
Martin, GB .
EMBO JOURNAL, 2003, 22 (01) :60-69
[2]   MAP kinase signalling cascade in Arabidopsis innate immunity [J].
Asai, T ;
Tena, G ;
Plotnikova, J ;
Willmann, MR ;
Chiu, WL ;
Gomez-Gomez, L ;
Boller, T ;
Ausubel, FM ;
Sheen, J .
NATURE, 2002, 415 (6875) :977-983
[3]   Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4 [J].
Axtell, MJ ;
Staskawicz, BJ .
CELL, 2003, 112 (03) :369-377
[4]   Pseudomonas syringae pv. tomato DC3000 HopPtoM (CEL ORF3) is important for lesion formation but not growth in tomato and is secreted and translocated by the Hrp type III secretion system in a chaperone-dependent manner [J].
Badel, JL ;
Nomura, K ;
Bandyopadhyay, S ;
Shimizu, R ;
Collmer, A ;
He, SY .
MOLECULAR MICROBIOLOGY, 2003, 49 (05) :1239-1251
[5]   NopL, an effector protein of Rhizobium sp NGR234, thwarts activation of plant defense reactions [J].
Bartsev, AV ;
Deakin, WJ ;
Boukli, NM ;
McAlvin, CB ;
Stacey, G ;
Malnoë, P ;
Broughton, WJ ;
Staehelin, C .
PLANT PHYSIOLOGY, 2004, 134 (02) :871-879
[6]   Pseudomonas syringae phytotoxins:: Mode of action, regulation, and biosynthesis by peptide and polyketide synthetases [J].
Bender, CL ;
Alarcón-Chaidez, F ;
Gross, DC .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1999, 63 (02) :266-+
[7]   Identification of Pseudomonas syringae pv. tomato genes induced during infection of Arabidopsis thaliana [J].
Boch, J ;
Joardar, V ;
Gao, L ;
Robertson, TL ;
Lim, M ;
Kunkel, BN .
MOLECULAR MICROBIOLOGY, 2002, 44 (01) :73-88
[8]   A saponin-detoxifying enzyme mediates suppression of plant defences [J].
Bouarab, K ;
Melton, R ;
Peart, J ;
Baulcombe, D ;
Osbourn, A .
NATURE, 2002, 418 (6900) :889-892
[9]   A translocated protein tyrosine phosphatase of Pseudomonas syringae pv. tomato DC3000 modulates plant defence response to infection [J].
Bretz, JR ;
Mock, NM ;
Charity, JC ;
Zeyad, S ;
Baker, CJ ;
Hutcheson, SW .
MOLECULAR MICROBIOLOGY, 2003, 49 (02) :389-400
[10]   Hrp genes in Xanthomonas campestris pv vesicatoria determine ability to suppress papilla deposition in pepper mesophyll cells [J].
Brown, I ;
Mansfield, J ;
Bonas, U .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1995, 8 (06) :825-836