Incompressible limit for a viscous compressible fluid

被引:299
作者
Lions, PL
Masmoudi, N
机构
[1] Univ Paris 09, CEREMADE, URA CNRS 749, F-75775 Paris 16, France
[2] DMI, ENS, F-75005 Paris, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 1998年 / 77卷 / 06期
关键词
D O I
10.1016/S0021-7824(98)80139-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove various asymptotic results concerning global (weak) solutions of compressible isentropic Navier-Stokes equations. More precisely, we show various results establishing the convergence, as the density becomes constant and the Mach number goes to 0, towards solutions of incompressible models (Navier-Stokes or Euler equations). Most of these results are global in time and without size restriction on the initial data. We also observe rigorously the linearized system around constant flows. (C) Elsevier, Paris.
引用
收藏
页码:585 / 627
页数:43
相关论文
共 16 条
[1]  
CHEMIN JY, 1993, FACETTE MATH MECANIQ
[2]  
Grenier E, 1997, COMMUN PART DIFF EQ, V22, P953
[3]   Oscillatory perturbations of the Navier Stokes equations [J].
Grenier, E .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (06) :477-498
[4]   SINGULAR LIMITS OF QUASILINEAR HYPERBOLIC SYSTEMS WITH LARGE PARAMETERS AND THE INCOMPRESSIBLE LIMIT OF COMPRESSIBLE FLUIDS [J].
KLAINERMAN, S ;
MAJDA, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :481-524
[5]   COMPRESSIBLE AND INCOMPRESSIBLE FLUIDS [J].
KLAINERMAN, S ;
MAJDA, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (05) :629-651
[6]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[7]  
Leray J., 1934, J MATH PURE APPL, V13, P331
[8]  
Leray J., 1933, J. Math. Pures Appl, V12, P1
[9]  
Lions P.-L., 1998, Oxford Lecture Series in Mathematics and Its Applications, V2
[10]  
LIONS PL, 1993, CR ACAD SCI I-MATH, V317, P1197