Oscillatory perturbations of the Navier Stokes equations

被引:110
作者
Grenier, E
机构
[1] Lab. d'Analyse Numérique, CNRS-URA 189, Université Paris-VI, 75252 Paris CEDEX 05, 4, place Jussieu
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 1997年 / 76卷 / 06期
关键词
D O I
10.1016/S0021-7824(97)89959-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the convergence of weak and strong solutions of oscillatory perturbations of the Navier-Stokes equations and in particular the asymptotic behaviour of rotating fluids and of slightly compressible fluids.
引用
收藏
页码:477 / 498
页数:22
相关论文
共 28 条
[1]  
ADDED S, 1986, CR ACAD SCI I-MATH, V303, P119
[2]  
BABIN A, STRUCTURE DYNAMICS N, P145
[3]  
BABIN A, GLOBAL SPLITTING INT
[4]  
BOURGEOIS AJ, VALIDITY QUASIGEOSTR
[5]  
CHEMIN JY, 1995, C R ACAD SCI PARIS
[6]  
EMBID P, AVERAGING OVER FAST
[7]  
FITZMAURICE N, NONLINEAR WAVES WEAK
[8]   DEFECT MEASURES OF THE VLASOV-POISSON SYSTEM IN THE QUASI-NEUTRAL REGIME [J].
GRENIER, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (7-8) :1189-1215
[9]  
GRENIER E, IN PRESS CPDE
[10]   SINGULAR LIMITS OF QUASILINEAR HYPERBOLIC SYSTEMS WITH LARGE PARAMETERS AND THE INCOMPRESSIBLE LIMIT OF COMPRESSIBLE FLUIDS [J].
KLAINERMAN, S ;
MAJDA, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :481-524