Oscillatory perturbations of the Navier Stokes equations

被引:110
作者
Grenier, E
机构
[1] Lab. d'Analyse Numérique, CNRS-URA 189, Université Paris-VI, 75252 Paris CEDEX 05, 4, place Jussieu
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 1997年 / 76卷 / 06期
关键词
D O I
10.1016/S0021-7824(97)89959-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the convergence of weak and strong solutions of oscillatory perturbations of the Navier-Stokes equations and in particular the asymptotic behaviour of rotating fluids and of slightly compressible fluids.
引用
收藏
页码:477 / 498
页数:22
相关论文
共 28 条
[11]   CONVERGENCE OF THE SOLUTIONS OF THE COMPRESSIBLE TO THE SOLUTIONS OF THE INCOMPRESSIBLE NAVIER - STOKES EQUATIONS [J].
KREISS, HO ;
LORENZ, J ;
NAUGHTON, MJ .
ADVANCES IN APPLIED MATHEMATICS, 1991, 12 (02) :187-214
[12]  
LANDAU L, MECANIQUE FLUIDES
[13]  
LERAY J, 1936, ACTA MATH, V35, P139
[14]   NEW FORMULATIONS OF THE PRIMITIVE EQUATIONS OF ATMOSPHERE AND APPLICATIONS [J].
LIONS, JL ;
TEMAM, R ;
WANG, SH .
NONLINEARITY, 1992, 5 (02) :237-288
[15]  
LIONS JL, 1993, CR ACAD SCI I-MATH, V316, P211
[16]  
LIONS JL, 1993, CR ACAD SCI I-MATH, V316, P113
[17]  
LIONS JL, 1994, CR ACAD SCI I-MATH, V318, P1165
[18]   ON THE EQUATIONS OF THE LARGE-SCALE OCEAN [J].
LIONS, JL ;
TEMAM, R ;
WANG, SH .
NONLINEARITY, 1992, 5 (05) :1007-1053
[19]  
LIONS JL, QUELQUES METHODES RE
[20]  
LIONS JL, COMMUNICATION