Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells

被引:784
作者
Dowling, Ryan J. O.
Zakikhani, Mahvash
Fantus, I. George
Pollak, Michael
Sonenberg, Nahum
机构
[1] McGill Canc Ctr, Dept Biochem, Montreal, PQ H3G 1Y6, Canada
[2] McGill Univ, Dept Oncol, Montreal, PQ, Canada
[3] McGill Univ, Jewish Gen Hosp, Canc Prevent Ctr, Montreal, PQ H3T 1E2, Canada
[4] Univ Toronto, Mt Sinai Hosp, Dept Med & Physiol, Toronto, ON M5G 1X5, Canada
关键词
D O I
10.1158/0008-5472.CAN-07-2310
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Metformin is used for the treatment of type 2 diabetes because of its ability to lower blood glucose. The effects of metformin are explained by the activation of AMP-activated protein kinase (AMPK), which regulates cellular energy metabolism. Recently, we showed that metformin inhibits the growth of breast cancer cells through the activation of AMPK. Here, we show that metformin inhibits translation initiation. In MCF-7 breast cancer cells, metformin treatment led to a 30% decrease in global protein synthesis. Metformin caused a dose-dependent specific decrease in cap-dependent translation, with a maximal inhibition of 40%. Polysome profile analysis showed an inhibition of translation initiation as metformin treatment of MCF-7 cells led to a shift of mRNAs from heavy to light polysomes and a concomitant increase in the amount of 80S ribosomes. The decrease in translation caused by metformin was associated with mammalian target of rapamycin (mTOR) inhibition, and a decrease in the phosphorylation of S6 kinase, ribosomal protein S6, and eIF4E-binding protein 1. The effects of metformin on translation were mediated by AMPK, as treatment of cells with the AMPK inhibitor compound C prevented the inhibition of translation. Furthermore, translation in MDA-MB-231 cells, which lack the AMPK kinase LKB1, and in tuberous sclerosis complex 2 null (TSC2(-/-)) mouse embryonic fibroblasts was unaffected bv metformin, indicating that LKB1 and TSC2 are involved in the mechanism of action of metformin. These results show that metformin-mediated AMPK activation leads to inhibition of mTOR and a reduction in translation initiation, thus providing a possible mechanism of action of metformin in the inhibition of cancer cell growth.
引用
收藏
页码:10804 / 10812
页数:9
相关论文
共 49 条
[1]   Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation [J].
Beretta, L ;
Gingras, AC ;
Svitkin, YV ;
Hall, MN ;
Sonenberg, N .
EMBO JOURNAL, 1996, 15 (03) :658-664
[2]   Tuberous sclerosis complex proteins 1 and 2 control serum-dependent translation in a TOP-dependent and -independent manner [J].
Bilanges, Benoit ;
Argonza-Barrett, Rhoda ;
Kolesnichenko, Marina ;
Skinner, Christina ;
Nair, Manoj ;
Chen, Michelle ;
Stokoe, David .
MOLECULAR AND CELLULAR BIOLOGY, 2007, 27 (16) :5746-5764
[3]   The TOR pathway: A target for cancer therapy [J].
Bjornsti, MA ;
Houghton, PJ .
NATURE REVIEWS CANCER, 2004, 4 (05) :335-348
[4]   Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte [J].
Chan, AYM ;
Soltys, CLM ;
Young, ME ;
Proud, CG ;
Dyck, JRB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (31) :32771-32779
[5]   Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status [J].
Cheng, SWY ;
Fryer, LGD ;
Carling, D ;
Shepherd, PR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (16) :15719-15722
[6]  
EATSON JB, 2006, ONCOGENE, V25, P6436
[7]   Metformin and reduced risk of cancer in diabetic patients [J].
Evans, JMM ;
Donnelly, LA ;
Emslie-Smith, AM ;
Alessi, DR ;
Morris, AD .
BMJ-BRITISH MEDICAL JOURNAL, 2005, 330 (7503) :1304-1305
[8]   eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation [J].
Gingras, AC ;
Raught, B ;
Sonenberg, N .
ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 :913-963
[9]   Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism [J].
Gingras, AC ;
Gygi, SP ;
Raught, B ;
Polakiewicz, RD ;
Abraham, RT ;
Hoekstra, MF ;
Aebersold, R ;
Sonenberg, N .
GENES & DEVELOPMENT, 1999, 13 (11) :1422-1437
[10]   Global and specific translational control by rapamycin in T cells uncovered by microarrays and proteomics [J].
Grolleau, A ;
Bowman, J ;
Pradet-Balade, B ;
Puravs, E ;
Hanash, S ;
Garcia-Sanz, JA ;
Beretta, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (25) :22175-22184