Enzymatic logic of anthrax stealth siderophore biosynthesis: AsbA catalyzes ATP-Dependent condensation of citric acid and spermidine

被引:39
作者
Oves-Costales, Daniel
Kadi, Nadia
Fogg, Mark J.
Song, Lijiang
Wilson, Keith S.
Challis, Gregory L. [1 ]
机构
[1] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England
[2] Univ York, Dept Chem, York YO10 5YW, N Yorkshire, England
关键词
D O I
10.1021/ja072391o
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Petrobactin is an iron-chelating siderophore originally isolated from Marinobacter hydrocarbonoclasticus that has been shown to play an important role in growth under iron-deficient conditions and virulence of the deadly bioterrorism agent Bacillus anthracis. It has recently been shown not to bind to siderocalin, leading it to be designated as a "stealth siderophore" that can avoid the mammalian immune system. A unique combination of nonribosomal peptide synthetase (NRPS) and NRPS-independent siderophore (NIS) synthetase enzymes is known to be required for petrobactin biosynthesis in B. anthracis. Here it is shown that AsbA from B. anthracis, the first type A NIS synthetase to be biochemically characterized, catalyzes ATP-dependent regioselective condensation of citric acid with N-8 of spermidine, but not with N-1-(3,4-dihydroxybenzoyl)-spermidine. These results rule out a recently proposed pathway for petrobactin biosynthesis involving AsbA-catalyzed condensation of N-1-(3,4-dihydroxybenzoyl)-spermidine with citric acid and show that acylation of N-1 of spermidine with the 3,4-dihydroxybenzoyl group must occur after acylation of N-8 of spermidine with citrate. They also provide the fundamental knowledge needed to establish a high throughput screen for inhibitors of AsbA that may provide the basis for development of new antibiotics for the treatment of deadly anthrax infections.
引用
收藏
页码:8416 / +
页数:3
相关论文
共 16 条
[1]   Anthrax pathogen evades the mammalian immune system through stealth siderophore production [J].
Abergel, Rebecca J. ;
Wilson, Melissa K. ;
Arceneaux, Jean E. L. ;
Hoette, Trisha M. ;
Strong, Roland K. ;
Byers, B. Rowe ;
Raymond, Kenneth N. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (49) :18499-18503
[2]   Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence [J].
Cendrowski, S ;
MacArthur, W ;
Hanna, P .
MOLECULAR MICROBIOLOGY, 2004, 51 (02) :407-417
[3]   A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases [J].
Challis, GL .
CHEMBIOCHEM, 2005, 6 (04) :601-611
[4]   Genetics and assembly line enzymology of siderophore biosynthesis in bacteria [J].
Crosa, JH ;
Walsh, CT .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2002, 66 (02) :223-+
[5]   Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis [J].
Ferreras, JA ;
Ryu, JS ;
Di Lello, F ;
Tan, DS ;
Quadri, LEN .
NATURE CHEMICAL BIOLOGY, 2005, 1 (01) :29-32
[6]  
Friedlander AM, 2000, CURR CLIN TOPICS INF, V20, P335
[7]   Anthrax as a biological weapon, 2002 - Updated recommendations for management [J].
Inglesby, TV ;
O'Toole, T ;
Henderson, DA ;
Bartlett, JG ;
Ascher, MS ;
Eitzen, E ;
Friedlander, AM ;
Gerberding, J ;
Hauer, J ;
Hughes, J ;
McDade, J ;
Osterholm, MT ;
Parker, G ;
Perl, TM ;
Russell, PK ;
Tonat, K .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2002, 287 (17) :2236-2252
[8]  
KADI N, IN PRESS NAT CHEM BI
[9]   Reconstitution and characterization of the Vibrio cholerae vibriobactin synthetase from VibB, VibE, VibF, and VibH [J].
Keating, TA ;
Marshall, CG ;
Walsh, CT .
BIOCHEMISTRY, 2000, 39 (50) :15522-15530
[10]   Biosynthetic analysis of the petrobactin siderophore pathway from Bacillus anthracis [J].
Lee, Jung Yeop ;
Janes, Brian K. ;
Passalacqua, Karla D. ;
Pfleger, Brian F. ;
Bergman, Nicholas H. ;
Liu, Haichuan ;
Hakansson, Kristina ;
Somu, Ravindranadh V. ;
Aldrich, Courtney C. ;
Cendrowski, Stephen ;
Hanna, Philip C. ;
Sherman, David H. .
JOURNAL OF BACTERIOLOGY, 2007, 189 (05) :1698-1710