Measurement-based quantum computation beyond the one-way model

被引:137
作者
Gross, D.
Eisert, J.
Schuch, N.
Perez-Garcia, D.
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England
[2] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2BW, England
[3] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[4] Univ Complutense Madrid, Dept Anal Matemat, E-28040 Madrid, Spain
来源
PHYSICAL REVIEW A | 2007年 / 76卷 / 05期
关键词
D O I
10.1103/PhysRevA.76.052315
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce schemes for quantum computing based on local measurements on entangled resource states. This work elaborates on the framework established in Gross and Eisert [Phys. Rev. Lett. 98, 220503 (2007); quant-ph/0609149]. Our method makes use of tools from many-body physics-matrix product states, finitely correlated states, or projected entangled pairs states-to show how measurements on entangled states can be viewed as processing quantum information. This work hence constitutes an instance where a quantum information problem-how to realize quantum computation-was approached using tools from many-body theory and not vice versa. We give a more detailed description of the setting and present a large number of examples. We find computational schemes, which differ from the original one-way computer, for example, in the way the randomness of measurement outcomes is handled. Also, schemes are presented where the logical qubits are no longer strictly localized on the resource state. Notably, we find a great flexibility in the properties of the universal resource states: They may, for example, exhibit nonvanishing long-range correlation functions or be locally arbitrarily close to a pure state. We discuss variants of Kitaev's toric code states as universal resources, and contrast this with situations where they can be efficiently classically simulated. This framework opens up a way of thinking of tailoring resource states to specific physical systems, such as cold atoms in optical lattices or linear optical systems.
引用
收藏
页数:20
相关论文
共 67 条
[41]   Controlled collisions for multi-particle entanglement of optically trapped atoms [J].
Mandel, O ;
Greiner, M ;
Widera, A ;
Rom, T ;
Hänsch, TW ;
Bloch, I .
NATURE, 2003, 425 (6961) :937-940
[42]  
MARKOV I, ARXIVQUANTPH0511069
[43]  
Nielsen M.A., 2002, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[44]   Cluster-state quantum computation [J].
Nielsen, MA .
REPORTS ON MATHEMATICAL PHYSICS, 2006, 57 (01) :147-161
[45]   Quantum computation by measurement and quantum memory [J].
Nielsen, MA .
PHYSICS LETTERS A, 2003, 308 (2-3) :96-100
[46]  
OSTLUND S, 1995, PHYS REV LETT, V75, P3537, DOI 10.1103/PhysRevLett.75.3537
[47]  
Perez-Garcia D, 2007, QUANTUM INF COMPUT, V7, P401
[48]   Localizable entanglement -: art. no. 042306 [J].
Popp, M ;
Verstraete, F ;
Martín-Delgado, MA ;
Cirac, JI .
PHYSICAL REVIEW A, 2005, 71 (04)
[49]  
Raussendorf R, 2002, QUANTUM INFORM COMPU, V2, P443
[50]   Measurement-based quantum computation on cluster states [J].
Raussendorf, R ;
Browne, DE ;
Briegel, HJ .
PHYSICAL REVIEW A, 2003, 68 (02) :32