Robust maximum likelihood estimation in the linear model

被引:24
作者
Calafiore, G
El Ghaoui, L
机构
[1] Politecn Torino, Dipartimento Automat & Informat, I-10129 Turin, Italy
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
robust estimation; distributional robustness; least squares; convex optimization; linear matrix inequalities;
D O I
10.1016/S0005-1098(00)00189-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the problem of maximum likelihood parameter estimation in linear models affected by Gaussian noise, whose mean and covariance matrix are uncertain. The proposed estimate maximizes a lower bound on the worst-case (with respect to the uncertainty) likelihood of the measured sample, and is computed solving a semidefinite optimization problem (SDP). The problem of linear robust estimation is also studied in the paper, and the statistical and optimality properties of the resulting linear estimator are discussed. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:573 / 580
页数:8
相关论文
共 24 条
[1]  
[Anonymous], LINEAR ESTIMATION
[2]  
[Anonymous], MATH STAT
[3]  
[Anonymous], DYNAMIC SYSTEM IDENT
[4]  
Ben-Tal A., 2000, HDB SEMIDEFINITE PRO
[5]  
Berger J, 1988, LECT NOTES MONOGRAPH
[6]  
BJORCK A, 1991, BIT, V31, P238
[7]  
Boyd S, 1994, STUDIES APPL MATH
[8]  
CALAFIORE G, 1998, P 1998 IEEE INT C RO
[9]   Parameter estimation in the presence of bounded data uncertainties [J].
Chandrasekaran, S ;
Golub, GH ;
Gu, M ;
Sayed, AH .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (01) :235-252
[10]  
Dussy S, 1998, INT J ROBUST NONLIN, V8, P377, DOI 10.1002/(SICI)1099-1239(19980415/30)8:4/5<377::AID-RNC360>3.0.CO