Surface salt bridges stabilize the GCN4 leucine zipper

被引:92
作者
Spek, EJ
Bui, AH
Lu, M
Kallenbach, NR
机构
[1] NYU, Dept Chem, New York, NY 10003 USA
[2] Cornell Univ, Coll Med, Dept Biochem, New York, NY 10021 USA
关键词
GCN4; leucine zipper; salt bridge; thermal stability;
D O I
10.1002/pro.5560071121
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We present a study of the role of salt bridges in stabilizing a simplified tertiary structural motif, the coiled-coil. Changes in GCN4 sequence have been engineered that introduce trial patterns of single and multiple salt bridges at solvent exposed sites. At the same sites, a set of alanine mutants was generated to provide a reference for thermodynamic analysis of the salt bridges. Introduction of three alanines stabilizes the dimer by 1.1 kcal/mol relative to the wild-type. An arrangement corresponding to a complex type of salt bridge involving three groups stabilizes the dimer by 1.7 kcal/mol, an apparent elevation of the melting temperature relative to wild type of about 22 degrees C. While identifying local from nonlocal contributions to protein stability is difficult, stabilizing interactions can be identified by use of cycles. Introduction of alanines for side chains of lower helix propensity and complex salt bridges both stabilize the coiled-coil, so that combining the two should yield melting temperatures substantially higher than the starting species, approaching those of thermophilic sequences.
引用
收藏
页码:2431 / 2437
页数:7
相关论文
共 57 条
[1]   PH-INDUCED DENATURATION OF PROTEINS - A SINGLE SALT BRIDGE CONTRIBUTES 3-5 KCAL MOL TO THE FREE-ENERGY OF FOLDING OF T4-LYSOZYME [J].
ANDERSON, DE ;
BECKTEL, WJ ;
DAHLQUIST, FW .
BIOCHEMISTRY, 1990, 29 (09) :2403-2408
[2]  
[Anonymous], 1980, BIOPHYS CHEM
[3]   DETERMINATION OF ALPHA-HELIX PROPENSITY WITHIN THE CONTEXT OF A FOLDED PROTEIN - SITES 44 AND 131 IN BACTERIOPHAGE-T4 LYSOZYME [J].
BLABER, M ;
ZHANG, XJ ;
LINDSTROM, JD ;
PEPIOT, SD ;
BAASE, WA ;
MATTHEWS, BW .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 235 (02) :600-624
[4]   STRUCTURAL BASIS OF AMINO-ACID ALPHA-HELIX PROPENSITY [J].
BLABER, M ;
ZHANG, XJ ;
MATTHEWS, BW .
SCIENCE, 1993, 260 (5114) :1637-1640
[5]   STRUCTURE OF A HYPERTHERMOPHILIC TUNGSTOPTERIN ENZYME, ALDEHYDE FERREDOXIN OXIDOREDUCTASE [J].
CHAN, MK ;
MUKUND, S ;
KLETZIN, A ;
ADAMS, MWW ;
REES, DC .
SCIENCE, 1995, 267 (5203) :1463-1469
[6]   INTERACTIONS BETWEEN HYDROPHOBIC SIDE-CHAINS WITHIN ALPHA-HELICES [J].
CREAMER, TP ;
ROSE, GD .
PROTEIN SCIENCE, 1995, 4 (07) :1305-1314
[7]  
Creighton TE, 1993, PROTEINS STRUCTURES, P139
[8]   Automated design of the surface positions of protein helices [J].
Dahiyat, BI ;
Gordon, DB ;
Mayo, SL .
PROTEIN SCIENCE, 1997, 6 (06) :1333-1337
[9]   CONTRIBUTIONS OF ENGINEERED SURFACE SALT BRIDGES TO THE STABILITY OF T4 LYSOZYME DETERMINED BY DIRECTED MUTAGENESIS [J].
DAOPIN, S ;
SAUER, U ;
NICHOLSON, H ;
MATTHEWS, BW .
BIOCHEMISTRY, 1991, 30 (29) :7142-7153
[10]   The magnitude of the backbone conformational entropy change in protein folding [J].
DAquino, JA ;
Gomez, J ;
Hilser, VJ ;
Lee, KH ;
Amzel, LM ;
Freire, E .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1996, 25 (02) :143-156