Selective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking

被引:83
作者
Bergersen, LH
Magistretti, PJ
Pellerin, L
机构
[1] Univ Lausanne, Inst Physiol, CH-1005 Lausanne, Switzerland
[2] Univ Oslo, Inst Anat, Oslo, Norway
[3] Univ Oslo, Ctr Mol Biol & Neurosci, Oslo, Norway
基金
英国医学研究理事会;
关键词
energy metabolism; lactate; monocarboxylate transporter; postsynaptic density; synaptic plasticity;
D O I
10.1093/cercor/bhh138
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
MCT2 is the main neuronal monocarboxylate transporter needed by neurons if they are to use lactate as an additional energy substrate. Previous evidence suggested that some MCT2 could be located in postsynaptic elements of glutamatergic synapses. Using post-embedding electron microscopic immunocytochemistry, it is demonstrated that MCT2 is present at postsynaptic density of asymmetric synapses, in the stratum radiatum of both rat hippocampal CA1 and CA3 regions, as well as at parallel fibre-Purkinje cell synapses in mouse cerebellum. MCT2 levels were significantly lower at mossy fibre synapses on CA3 neurons, and MCT2 was almost absent from symmetric synapses on CA1 pyramidal cells. It could also be demonstrated using quantitative double-labeling immunogold cytochemistry that MCT2 and AMPA receptor GluR2/3 subunits have a similar postsynaptic distribution at asymmetric synapses with high levels expressed within the postsynaptic density. In addition, as for AMPA receptors, a significant proportion of MCT2 is located on vesicular membranes within the postsynaptic spine, forming an intracellular pool available for a putative postsynaptic endo/exocytotic trafficking at these excitatory synapses. Altogether, the data presented provide evidence for MCT2 expression in the postsynaptic density area at specific subsets of glutamatergic synapses, and also suggest that MCT2, like AMPA receptors, could undergo membrane trafficking.
引用
收藏
页码:361 / 370
页数:10
相关论文
共 51 条
[21]   Cloning of the monocarboxylate transporter isoform MCT2 from rat testis provides evidence that expression in tissues is species-specific and may involve post-transcriptional regulation [J].
Jackson, VN ;
Price, NT ;
Carpenter, L ;
Halestrap, AP .
BIOCHEMICAL JOURNAL, 1997, 324 :447-453
[22]   Signal-processing machines at the postsynaptic density [J].
Kennedy, MB .
SCIENCE, 2000, 290 (5492) :750-754
[23]  
Kessler JP, 1999, SYNAPSE, V34, P55, DOI 10.1002/(SICI)1098-2396(199910)34:1<55::AID-SYN7>3.0.CO
[24]  
2-B
[25]   Biochemical and morphological characterization of an intracellular membrane compartment containing AMPA receptors [J].
Lee, SH ;
Valtschanoff, JG ;
Kharazia, VN ;
Weinberg, R ;
Sheng, M .
NEUROPHARMACOLOGY, 2001, 41 (06) :680-692
[26]   Monocarboxylate transporter (MCT1) abundance in brains of suckling and adult rats: a quantitative electron microscopic immunogold study [J].
Leino, RL ;
Gerhart, DZ ;
Drewes, LR .
DEVELOPMENTAL BRAIN RESEARCH, 1999, 113 (1-2) :47-54
[27]   THE RAT DELTA-1 AND DELTA-2 SUBUNITS EXTEND THE EXCITATORY AMINO-ACID RECEPTOR FAMILY [J].
LOMELI, H ;
SPRENGEL, R ;
LAURIE, DJ ;
KOHR, G ;
HERB, A ;
SEEBURG, PH ;
WISDEN, W .
FEBS LETTERS, 1993, 315 (03) :318-322
[28]   AMPA receptor trafficking and synaptic plasticity [J].
Malinow, R ;
Malenka, RC .
ANNUAL REVIEW OF NEUROSCIENCE, 2002, 25 :103-126
[29]   IMMUNOPRECIPITATION, IMMUNOBLOTTING, AND IMMUNOCYTOCHEMISTRY STUDIES SUGGEST THAT GLUTAMATE-RECEPTOR DELTA-SUBUNITS FORM NOVEL POSTSYNAPTIC RECEPTOR COMPLEXES [J].
MAYAT, E ;
PETRALIA, RS ;
WANG, YX ;
WENTHOLD, RJ .
JOURNAL OF NEUROSCIENCE, 1995, 15 (03) :2533-2546
[30]  
MULLER M, 1980, P 7 EUR C EL MICR, V2, P720