H∞-control theory of fluid dynamics

被引:35
作者
Barbu, V [1 ]
Sritharan, SS
机构
[1] Univ Iasi, Dept Math, Iasi, Romania
[2] Space & Naval Warfare Syst Ctr, San Diego, CA 92152 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1998年 / 454卷 / 1979期
关键词
robust control; control of fluids; active flow control; H-infinity control; Hamilton-Jacobi theory; Hamiltonian systems;
D O I
10.1098/rspa.1998.0289
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Robust (or H-infinity-) control theory has been an expanding subject in recent years because of its wide applications and its close connection to operator theory on Hardy spaces. We develop an H-infinity-control theory for fluid dynamics. Our result establishes that if the H-infinity-control problem for the linearized Navier-Stokes equation has a gamma-suboptimal solution, then the corresponding H-infinity-control problem for the nonlinear system has a solution for small perturbations of the steady solution. The proof relies on the existence of positively invariant manifolds for certain Hamiltonian systems.
引用
收藏
页码:3009 / 3033
页数:25
相关论文
共 53 条
[51]  
VANKEULEN B, 1993, HINFINITY CONTROL DI
[52]  
YOUNG LC, 1980, CALCULUS VARIATIONS