Different Er centres in Si and their use for electroluminescent devices

被引:36
作者
Jantsch, W [1 ]
Lanzerstorfer, S [1 ]
Palmetshofer, L [1 ]
Stepikhova, M [1 ]
Preier, H [1 ]
机构
[1] Johannes Kepler Univ, Inst Halbleiterphys, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
erbium; non-radiative de-excitation; Er-complex; silicon;
D O I
10.1016/S0022-2313(98)00065-9
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
At low temperatures, Er in Si produces a big variety of spectra in the 1.5 mu m region which can be identified by high-resolution spectroscopy as being due to either interstitial Er or different complexes of Er with oxygen, intrinsic defects and other light impurities. Although the luminescence yield can be improved by codoping with light elements (C, N, O, F, etc.) all of these centres show strong thermal quenching of the luminescence above 15-200 K. There is, however, one type of rather broad spectrum in heavily Er- and O- doped Si, which is seen up to temperatures of 400 K and above. This spectrum can be excited in Si by hot electrons generated in a reverse biased diode. The same spectrum appears also in other Si related materials like porous Si and in silica with the same temperature dependence. In these materials, excitation spectroscopy is possible and it shows also close agreement of the excitation spectra. From these findings we infer that Er is incorporated in another surrounding and we propose Si-Er-O nano-precipitates since the spectra of other candidates, like Er2O3, are clearly different. We review recent work on the excitation and quenching mechanisms and we discuss consequences for technology. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:9 / 17
页数:9
相关论文
共 27 条
[1]  
ADLER DL, 1992, APPL PHYS LETT, V61, P2182
[2]   Light emission from Er-doped Si: Materials properties, mechanisms, and device performance [J].
Coffa, S ;
Franzo, G ;
Priolo, F .
MRS BULLETIN, 1998, 23 (04) :25-32
[3]   OPTICAL ACTIVATION AND EXCITATION MECHANISMS OF ER IMPLANTED IN SI [J].
COFFA, S ;
PRIOLO, F ;
FRANZO, G ;
BELLANI, V ;
CARNERA, A ;
SPINELLA, C .
PHYSICAL REVIEW B, 1993, 48 (16) :11782-11788
[4]   1.54-MU-M LUMINESCENCE OF ERBIUM-IMPLANTED III-V SEMICONDUCTORS AND SILICON [J].
ENNEN, H ;
SCHNEIDER, J ;
POMRENKE, G ;
AXMANN, A .
APPLIED PHYSICS LETTERS, 1983, 43 (10) :943-945
[5]   1.54-MU-M ELECTROLUMINESCENCE OF ERBIUM-DOPED SILICON GROWN BY MOLECULAR-BEAM EPITAXY [J].
ENNEN, H ;
POMRENKE, G ;
AXMANN, A ;
EISELE, K ;
HAYDL, W ;
SCHNEIDER, J .
APPLIED PHYSICS LETTERS, 1985, 46 (04) :381-383
[6]  
FAVENNEC PN, 1993, MATER RES SOC SYMP P, V301, P181, DOI 10.1557/PROC-301-181
[7]   Silicon-based microphotonics and integrated optoelectronics [J].
Fitzgerald, EA ;
Kimerling, LC .
MRS BULLETIN, 1998, 23 (04) :39-47
[8]  
FRANZO G, 1994, APPL PHYS LETT, V64, P17
[9]   Factors governing the photoluminescence yield of erbium implanted silicon [J].
Jantsch, W ;
Przybylinska, H ;
Skierbiszewski, C ;
Lanzerstorfer, S ;
Palmetshofer, L .
RARE EARTH DOPED SEMICONDUCTORS II, 1996, 422 :101-111
[10]   Erbium doped optical-waveguide amplifiers on silicon [J].
Kik, PG ;
Polman, A .
MRS BULLETIN, 1998, 23 (04) :48-54