Folding is not required for bilayer insertion:: Replica exchange simulations of an α-helical peptide with an explicit lipid bilayer

被引:96
作者
Nymeyer, H
Woolf, TB
Garcia, AE
机构
[1] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA
[2] Johns Hopkins Univ, Sch Med, Dept Physiol, Baltimore, MD 21205 USA
[3] Johns Hopkins Univ, Sch Med, Dept Biophys, Baltimore, MD 21205 USA
关键词
four-stage model; replica exchange molecular dynamics; WALP;
D O I
10.1002/prot.20460
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We implement the replica exchange molecular dynamics algorithm to study the interactions of a model peptide (WALP-16) with an explicitly represented DPPC membrane bilayer. We observe the spontaneous, unbiased insertion of WALP-16 into the DPPC bilayer and its folding into an alpha-helix with a transbilayer orientation. The free energy surface suggests that the insertion of the peptide into the DPPC bilayer precedes secondary structure formation. Although the peptide has some propensity to form a partially helical structure in the interfacial region of the DPPC/water system, this state is not a productive intermediate but rather an off-pathway trap for WALP-16 insertion. Equilibrium simulations show that the observed insertion/folding pathway mirrors the potential of mean force (PMF). Calculation of the enthalpic and entropic contributions to this PMF show that the surface bound conformation of WALP-16 is significantly lower in energy than other conformations, and that the insertion of WALP-16 into the bilayer without regular secondary structure is enthalpically unfavorable by 5-10 kcal/ mol/residue. The observed insertion/folding pathway disagrees with the dominant conceptual model,(1-3) which is that a surface-bound helix is an obligatory intermediate for the insertion of a-helical peptides into lipid bilayers. In our simulations, the observed insertion/folding pathway is favored because of a large (> 100 kcal/mol) increase in system entropy that occurs when the unstructured WALP-16 peptide enters the lipid bilayer interior. The insertion/folding pathway that is lowest in free energy depends sensitively on the near cancellation of large enthalpic and entropic terms. This suggests the possibility that intrinsic membrane peptides may have a diversity of insertion/folding behaviors depending on the exact system of peptide and lipid under consideration. Proteins 2005;59:783-790. (c) 2005 Wiley-Liss, Inc.
引用
收藏
页码:783 / 790
页数:8
相关论文
共 67 条
[1]  
[Anonymous], Membrane Proteins Of Known 3D Structure
[2]   Exploration of conformational phase space in polymer melts: A comparison of parallel tempering and conventional molecular dynamics simulations [J].
Bedrov, D ;
Smith, GD .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (03) :1121-1124
[3]   Free-energy determinants of alpha-helix insertion into lipid bilayers [J].
BenTal, N ;
BenShaul, A ;
Nicholls, A ;
Honig, B .
BIOPHYSICAL JOURNAL, 1996, 70 (04) :1803-1812
[4]   Free energy of amide hydrogen bond formation in vacuum, in water, and in liquid alkane solution [J].
BenTal, N ;
Sitkoff, D ;
Topol, IA ;
Yang, AS ;
Burt, SK ;
Honig, B .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (03) :450-457
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   How many membrane proteins are there? [J].
Boyd, D ;
Schierle, C ;
Beckwith, J .
PROTEIN SCIENCE, 1998, 7 (01) :201-205
[7]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[8]   Protein-lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring (Review) [J].
de Planque, MRR ;
Killian, JA .
MOLECULAR MEMBRANE BIOLOGY, 2003, 20 (04) :271-284
[9]   Different membrane anchoring positions of tryptophan and lysine in synthetic transmembrane α-helical peptides [J].
de Planque, MRR ;
Kruijtzer, JAW ;
Liskamp, RMJ ;
Marsh, D ;
Greathouse, DV ;
Koeppe, RE ;
de Kruijff, B ;
Killian, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (30) :20839-20846
[10]   Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions [J].
de Planque, MRR ;
Bonev, BB ;
Demmers, JAA ;
Greathouse, DV ;
Koeppe, RE ;
Separovic, F ;
Watts, A ;
Killian, JA .
BIOCHEMISTRY, 2003, 42 (18) :5341-5348