Determination of epithelial tissue scattering coefficient using confocal microscopy

被引:80
作者
Collier, T [1 ]
Arifler, D
Malpica, A
Follen, M
Richards-Kortum, R
机构
[1] Univ Texas, Dept Biomed Engn, Austin, TX 78712 USA
[2] Univ Texas, Dept Elect & Comp Engn, Austin, TX 78712 USA
[3] Univ Texas, MD Anderson Canc Ctr, Dept Pathol, Houston, TX 78730 USA
[4] Univ Texas, MD Anderson Canc Ctr, Dept Gynecol Oncol, Houston, TX 78730 USA
基金
美国国家卫生研究院;
关键词
cervix; confocal microscopy; epithelial tissue; scattering;
D O I
10.1109/JSTQE.2003.814413
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Most models of light propagation through tissue assume the scattering properties of the various tissue layers are the same. The authors present evidence that the scattering coefficient of normal cervical epithelium is significantly lower than values previously reported for bulk epithelial tissue. They estimated the scattering coefficient of normal and precancerous cervical epithelium using measurements of the reflectance as a function of depth from confocal images. Reflectance measurements were taken from ex vivo cervical biopsies and fit to an exponential function based upon Beer's law attenuation. The mean scattering coefficients derived were 22 cm(-1) for normal tissue and 69 cm(-1) for precancerous tissue. These values are significantly lower than previously reported for bulk epithelial tissues and suggest that scattering of bulk tissue is dominated by the stroma. They also suggest that computational models to describe light propagation in epithelial tissue must incorporate different scattering coefficients for the epithelium and stroma. Further, the lower scattering of the epithelium suggests greater probing depths for fiber optic probes used by optical diagnostic devices which measure reflectance and fluorescence in epithelial tissue. The difference in scattering between normal and precancerous tissue is attributed to increased nuclear size, optical density, and chromatin texture. The scattering coefficient's measured here are consistent with predictions of numerical solutions to Maxwell's equations for epithelial cell scattering.
引用
收藏
页码:307 / 313
页数:7
相关论文
共 48 条
[1]   OPTICAL SPECTROSCOPIC DIAGNOSIS OF CANCER AND NORMAL BREAST TISSUES [J].
ALFANO, RR ;
PRADHAN, A ;
TANG, GC ;
WAHL, SJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1989, 6 (05) :1015-1023
[2]  
ARIFLER D, UNPUB J BIOMED OPT, V38
[3]   Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry [J].
Bays, R ;
Wagnieres, G ;
Robert, D ;
Braichotte, D ;
Savary, JF ;
Monnier, P ;
vandenBergh, H .
APPLIED OPTICS, 1996, 35 (10) :1756-1766
[4]   Ultraviolet and visible spectroscopies for tissue diagnostics: Fluorescence spectroscopy and elastic-scattering spectroscopy [J].
Bigio, IJ ;
Mourant, JR .
PHYSICS IN MEDICINE AND BIOLOGY, 1997, 42 (05) :803-814
[5]   Optical coherence tomography for optical biopsy - Properties and demonstration of vascular pathology [J].
Brezinski, ME ;
Tearney, GJ ;
Bouma, BE ;
Izatt, JA ;
Hee, MR ;
Swanson, EA ;
Southern, JF ;
Fujimoto, JG .
CIRCULATION, 1996, 93 (06) :1206-1213
[6]  
Busam KJ, 2001, ARCH DERMATOL, V137, P923
[7]   A REVIEW OF THE OPTICAL-PROPERTIES OF BIOLOGICAL TISSUES [J].
CHEONG, WF ;
PRAHL, SA ;
WELCH, AJ .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1990, 26 (12) :2166-2185
[8]   Near real-time confocal microscopy of amelanotic tissue: Detection of dysplasia in ex vivo cervical tissue [J].
Collier, T ;
Lacy, A ;
Richards-Kortum, R ;
Malpica, A ;
Follen, M .
ACADEMIC RADIOLOGY, 2002, 9 (05) :504-512
[9]  
Drezek R, 2001, PHOTOCHEM PHOTOBIOL, V73, P636, DOI 10.1562/0031-8655(2001)073<0636:AMOFCT>2.0.CO
[10]  
2