Silicon-based composite anodes for Li-ion rechargeable batteries

被引:54
作者
Wang, Wei
Datta, Moni Kanchan
Kumta, Prashant N. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA
关键词
D O I
10.1039/B705311H
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Si-C and Si-C-Al composite powders have been synthesized by thermal treatment of high-energy mechanically-milled composite precursors comprising graphite, silicon, aluminium and several types of polymers such as poly(acrylonitrile), poly[(o-cresylglycidyl ether)-co-formaldehyde] resin and poly( methacrylonitrile). The polymers have been used to suppress the interfacial diffusion reactions between graphite, silicon and aluminium, which otherwise lead to the formation of electrochemically-inactive SiC and Al4C3 intermetallics during high- energy mechanical milling. The resultant Si-C composite obtained after thermal treatment of mechanically milled powders of nominal composition [52.5 wt% C]-[17.5 wt% Si]-[8 wt% PAN]-[22 wt% resin] exhibits a reversible capacity of similar to 630 mA h g(-1) with excellent capacity retention when cycled at a rate of similar to 160 mA g(-1). On the other hand, the Si-C-Al composite of nominal composition [ 52.5 wt% C] [ 14 wt% Si]-[3.5 wt% Al]-[30 wt% PMAN] exhibits a reversible capacity of similar to 650 mA h g(-1) up to 30 cycles at a charge/discharge rate of similar to 340 mA g(-1). Scanning electron microscopy analysis of electrochemically-cycled electrodes indicates that the microstructural stability and the structural integrity of the Si-C and Si-C-Al composite is retained during electrochemical cycling, contributing to the good cyclability demonstrated by the composites.
引用
收藏
页码:3229 / 3237
页数:9
相关论文
共 33 条
[1]   Single-electrode Peltier heats of Li-Si alloy electrodes in LiCl-KCl eutectic melt [J].
Amezawa, K ;
Yamamoto, N ;
Tomii, Y ;
Ito, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (06) :1986-1993
[2]   DIMENSIONALLY STABLE LI-ALLOY ELECTRODES FOR SECONDARY BATTERIES [J].
BESENHARD, JO ;
HESS, M ;
KOMENDA, P .
SOLID STATE IONICS, 1990, 40-1 :525-529
[3]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[4]   Face-centered-cubic to hexagonal-close-packed transformation in nanocrystalline Ni(Si) by mechanical alloying [J].
Datta, MK ;
Pabi, SK ;
Murty, BS .
JOURNAL OF MATERIALS RESEARCH, 2000, 15 (07) :1429-1432
[5]   Silicon, graphite and resin based hard carbon nanocomposite anodes for lithium ion batteries [J].
Datta, Moni Kanchan ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2007, 165 (01) :368-378
[6]   Silicon and carbon based composite anodes for lithium ion batteries [J].
Datta, Moni Kanchan ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2006, 158 (01) :557-563
[7]   Aluminum negative electrode in lithium ion batteries [J].
Hamon, Y ;
Brousse, T ;
Jousse, F ;
Topart, P ;
Buvat, P ;
Schleich, DM .
JOURNAL OF POWER SOURCES, 2001, 97-8 :185-187
[8]  
HOLPZAFEL M, 2006, ELECTROCHIM ACTA, V52, P973
[9]   Anode behaviors of aluminum antimony synthesized by mechanical alloying for lithium secondary battery [J].
Honda, H ;
Sakaguchi, H ;
Fukuda, Y ;
Esaka, T .
MATERIALS RESEARCH BULLETIN, 2003, 38 (04) :647-656
[10]   Tin-based amorphous oxide: A high-capacity lithium-ion-storage material [J].
Idota, Y ;
Kubota, T ;
Matsufuji, A ;
Maekawa, Y ;
Miyasaka, T .
SCIENCE, 1997, 276 (5317) :1395-1397