The folding pathway of a fast-folding immunoglobulin domain revealed by single-molecule mechanical experiments

被引:70
作者
Schwaiger, I
Schleicher, M
Noegel, AA
Rief, M
机构
[1] Tech Univ Munich, Phys Dept E22, D-85747 Garching, Germany
[2] Univ Munich, Adolf Butenandt Inst Zellbiol, D-80336 Munich, Germany
[3] Univ Cologne, Fak Med, Inst Biochem 1, D-50931 Cologne, Germany
关键词
atomic force microscope; filamin; folding kinetics;
D O I
10.1038/sj.embor.7400317
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The F-actin crosslinker filamin from Dictyostelium discoideum (ddFLN) has a rod domain consisting of six structurally similar immunoglobulin domains. When subjected to a stretching force, domain 4 unfolds at a lower force than all the other domains in the chain. Moreover, this domain shows a stable intermediate along its mechanical unfolding pathway. We have developed a mechanical single-molecule analogue to a double-jump stopped-flow experiment to investigate the folding kinetics and pathway of this domain. We show that an obligatory and productive intermediate also occurs on the folding pathway of the domain. Identical mechanical properties suggest that the unfolding and refolding intermediates are closely related. The folding process can be divided into two consecutive steps: in the first step 60 C-terminal amino acids form an intermediate at the rate of 55 s(-1); and in the second step the remaining 40 amino acids are packed on this core at the rate of 179 s(-1). This division increases the overall folding rate of this domain by a factor of ten compared with all other homologous domains of ddFLN that lack the folding intermediate.
引用
收藏
页码:46 / 51
页数:6
相关论文
共 20 条
[1]   Is protein folding hierarchic? II. Folding intermediates and transition states [J].
Baldwin, RL ;
Rose, GD .
TRENDS IN BIOCHEMICAL SCIENCES, 1999, 24 (02) :77-83
[2]   Pulling geometry defines the mechanical resistance of a β-sheet protein [J].
Brockwell, DJ ;
Paci, E ;
Zinober, RC ;
Beddard, GS ;
Olmsted, PD ;
Smith, DA ;
Perham, RN ;
Radford, SE .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (09) :731-737
[3]  
BUSTAMANTE C, 1994, SCIENCE, V265, P1600
[4]   The mechanical stability of ubiquitin is linkage dependent [J].
Carrion-Vazquez, M ;
Li, HB ;
Lu, H ;
Marszalek, PE ;
Oberhauser, AF ;
Fernandez, JM .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (09) :738-743
[5]   Mechanical and chemical unfolding of a single protein: A comparison [J].
Carrion-Vazquez, M ;
Oberhauser, AF ;
Fowler, SB ;
Marszalek, PE ;
Broedel, SE ;
Clarke, J ;
Fernandez, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3694-3699
[6]  
Cota E, 2000, PROTEIN SCI, V9, P112
[7]   Fast kinetics and mechanisms in protein folding [J].
Eaton, WA ;
Muñoz, V ;
Hagen, SJ ;
Jas, GS ;
Lapidus, LJ ;
Henry, ER ;
Hofrichter, J .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2000, 29 :327-359
[8]   Strength of a weak bond connecting flexible polymer chains [J].
Evans, E ;
Ritchie, K .
BIOPHYSICAL JOURNAL, 1999, 76 (05) :2439-2447
[9]   Force-clamp spectroscopy monitors the folding trajectory of a single protein [J].
Fernandez, JM ;
Li, HB .
SCIENCE, 2004, 303 (5664) :1674-1678
[10]   The repeating segments of the F-actin cross-linking gelation factor (ABP-120) have an immunoglobulin-like fold [J].
Fucini, P ;
Renner, C ;
Herberhold, C ;
Noegel, AA ;
Holak, TA .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (03) :223-230