Photothermal lens detection of gold nanoparticles: Theory and experiments

被引:35
作者
Brusnichkin, Anton V.
Nedosekin, Dmitry A.
Proskurnin, Mikhail A.
Zharov, Vladimir P.
机构
[1] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119991, Russia
[2] Univ Arkansas Med Sci, Philips Class Laser Labs, Little Rock, AR 72205 USA
关键词
laser; photothermal effects; thermal lens; gold nanoparticles; threshold sensitivity;
D O I
10.1366/000370207782597175
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
An approach for mode-mismatched two-beam (pump-probe) photothermal lens detection of multipoint light-absorbing targets in solution (e.g., gold nanoparticles) is developed for continuous-wave intensitymodulated laser-excitation mode. A description of the blooming of the thermooptical element (thermal lens) upon absorption of the excitation laser radiation is based on the summation of individual thermal waves from multiple heat sources. This description makes it possible to estimate the irregularities of the temperature (and, thus, the refractive index) profile for a discrete number of nanoparticles in the irradiated area and a change in the concentration and particle size parameters. Experimental results are in good agreement with theoretical dependences of the photothermal signal on nanoparticle size and concentration and excitation laser power. Calibration plots for particles from 2 to 250 nm show long linear ranges, limits of detection of gold nanoparticles at the level of hundreds of nanoparticles with the current setup, and the photothermallens sensitivity coefficient increases as a cubic function of particle size. Further improvements are discussed, including increasing the sensitivity thresholds up to one nanoparticle in the detected volume.
引用
收藏
页码:1191 / 1201
页数:11
相关论文
共 37 条
[1]   THERMAL LENS SPECTROMETRY IN TRACE-METAL ANALYSIS [J].
ABROSKIN, AG ;
BELYAEVA, TV ;
FILICHKINA, VA ;
IVANOVA, EK ;
PROSCURNIN, MA ;
SAVOSTINA, VM ;
BARBALAT, YA .
ANALYST, 1992, 117 (12) :1957-1962
[2]  
[Anonymous], 1986, Laser Optoacoustic Spectroscopy
[3]  
Berciaud S, 2005, PHYS REV LETT, V92, P25402
[4]  
Bialkowski S. E., 1996, PHOTOTHERMAL SPECTRO
[5]   Advances in contrast agents, reporters, and detection [J].
Bornhop, DJ ;
Contag, CH ;
Licha, K ;
Murphy, CJ .
JOURNAL OF BIOMEDICAL OPTICS, 2001, 6 (02) :106-110
[6]   Photothermal imaging of nanometer-sized metal particles among scatterers [J].
Boyer, D ;
Tamarat, P ;
Maali, A ;
Lounis, B ;
Orrit, M .
SCIENCE, 2002, 297 (5584) :1160-1163
[7]   Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J].
Daniel, MC ;
Astruc, D .
CHEMICAL REVIEWS, 2004, 104 (01) :293-346
[8]   LASER-INDUCED THERMAL LENS EFFECT FOR CALORIMETRIC TRACE ANALYSIS [J].
DOVICHI, NJ ;
HARRIS, JM .
ANALYTICAL CHEMISTRY, 1979, 51 (06) :728-731
[9]   Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer [J].
El-Sayed, IH ;
Huang, XH ;
El-Sayed, MA .
NANO LETTERS, 2005, 5 (05) :829-834
[10]   Covalently linked au nanoparticles to a viral vector: Potential for combined photothermal and gene cancer therapy [J].
Everts, M ;
Saini, V ;
Leddon, JL ;
Kok, RJ ;
Stoff-Khalili, M ;
Preuss, MA ;
Millican, CL ;
Perkins, G ;
Brown, JM ;
Bagaria, H ;
Nikles, DE ;
Johnson, DT ;
Zharov, VP ;
Curiel, DT .
NANO LETTERS, 2006, 6 (04) :587-591