Computational fluid dynamics modeling of polymer electrolyte membrane fuel cells

被引:92
作者
Guvelioglu, GH [1 ]
Stenger, HG [1 ]
机构
[1] Lehigh Univ, Dept Chem Engn, Bethlehem, PA 18015 USA
关键词
PEM fuel cells; fuel cell modeling; water management; CFD; FEMLAB;
D O I
10.1016/j.jpowsour.2005.01.011
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A detailed steady-state isothermal two-dimensional model of a proton exchange membrane fuel cell has been developed. A finite element method was used to solve this multi-component transport model coupled with flow in porous medium, charge balance, electrochemical kinetics, and a rigorous water balance in the membrane. The model-predicted fuel cell performance curves are compared with published experimental results and a good agreement was found. The complex water balance in the membrane was investigated and the operating conditions where the membrane becomes dehydrated were identified. The effects of channel width and bipolar plate shoulder dimensions, porosity, and the relative humidity of the inlet streams on the fuel cell performance are evaluated. It was found that smaller width channels and bipolar plate shoulders were required for high current density operations. As the electrode area under the bipolar plate shoulder increases, the fuel cell benefits more from higher porosity electrodes. The anode gas stream's relative humidity was found to be more critical for fuel cell performance than the cathode gas relative humidity. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 106
页数:12
相关论文
共 32 条
[11]  
*CD AD GROUP, 2004, STAR CD V3 22
[12]  
*COMSOL INC, 2004, FEMLAB 3 0 US GUID
[13]  
Fluent Inc, 2003, Fluent 6.1 User's Guide
[14]   WATER AND THERMAL MANAGEMENT IN SOLID-POLYMER-ELECTROLYTE FUEL-CELLS [J].
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (05) :1218-1225
[15]   Design and optimization of polymer electrolyte membrane (PEM) fuel cells [J].
Grujicic, M ;
Chittajallu, KM .
APPLIED SURFACE SCIENCE, 2004, 227 (1-4) :56-72
[16]   Two-dimensional model for proton exchange membrane fuel cells [J].
Gurau, V ;
Liu, HT ;
Kakac, S .
AICHE JOURNAL, 1998, 44 (11) :2410-2422
[17]   Review and analysis of PEM fuel cell design and manufacturing [J].
Mehta, V ;
Cooper, JS .
JOURNAL OF POWER SOURCES, 2003, 114 (01) :32-53
[18]   In situ water distribution measurements in a polymer electrolyte fuel cell [J].
Mench, MM ;
Dong, QL ;
Wang, CY .
JOURNAL OF POWER SOURCES, 2003, 124 (01) :90-98
[19]   Large-scale simulation of polymer electrolyte fuel cells by parallel computing [J].
Meng, H ;
Wang, CY .
CHEMICAL ENGINEERING SCIENCE, 2004, 59 (16) :3331-3343
[20]   Diffusion of water in Nafion 115 membranes [J].
Motupally, S ;
Becker, AJ ;
Weidner, JW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (09) :3171-3177