Diagnostic neuroimaging across diseases

被引:217
作者
Kloeppel, Stefan [1 ]
Abdulkadir, Ahmed [1 ]
Jack, Clifford R., Jr. [2 ]
Koutsouleris, Nikolaos [3 ]
Mourao-Miranda, Janaina [4 ,5 ]
Vemuri, Prashanthi [2 ]
机构
[1] Univ Med Ctr Freiburg, Sect Gerontopsychiat & Neuropsychol, Dept Psychiat & Psychotherapy, Freiburg, Germany
[2] Mayo Clin Rochester, Dept Radiol, Rochester, MN USA
[3] Univ Munich, Dept Psychiat & Psychotherapy, Munich, Germany
[4] Kings Coll London, Inst Psychiat, Ctr Neuroimaging London Sci, London WC2R 2LS, England
[5] UCL, Ctr Computat Stat & Machine Learning, London, England
关键词
Automated diagnosing; MRI; SVM; Dementia; Depression; Schizophrenia; ALZHEIMERS ASSOCIATION WORKGROUPS; MILD COGNITIVE IMPAIRMENT; PATTERN-CLASSIFICATION; NATIONAL INSTITUTE; CSF BIOMARKERS; NEUROBIOLOGICAL MARKERS; BRAIN ATROPHY; SAD FACES; MRI; RECOMMENDATIONS;
D O I
10.1016/j.neuroimage.2011.11.002
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Fully automated classification algorithms have been successfully applied to diagnose a wide range of neurological and psychiatric diseases. They are sufficiently robust to handle data from different scanners for many applications and in specific cases outperform radiologists. This article provides an overview of current applications taking structural imaging in Alzheimer's disease and schizophrenia as well as functional imaging to diagnose depression as examples. In this context, we also report studies aiming to predict the future course of the disease and the response to treatment for the individual. This has obvious clinical relevance but is also important for the design of treatment studies that may aim to include a cohort with a predicted fast disease progression to be more sensitive to detect treatment effects. In the second part, we present our own opinions on i) the role these classification methods can play in the clinical setting; ii) where their limitations are at the moment and iii) how those can be overcome. Specifically, we discuss strategies to deal with disease heterogeneity, diagnostic uncertainties, a probabilistic framework for classification and multi-class classification approaches. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:457 / 463
页数:7
相关论文
共 82 条
[1]   Can neurological evidence help courts assess criminal responsibility? Lessons from law and neuroscience [J].
Aharoni, Eyal ;
Funk, Chadd ;
Sinnott-Armstrong, Walter ;
Gazzaniga, Michael .
YEAR IN COGNITIVE NEUROSCIENCE 2008, 2008, 1124 :145-160
[2]   The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J].
Albert, Marilyn S. ;
DeKosky, Steven T. ;
Dickson, Dennis ;
Dubois, Bruno ;
Feldman, Howard H. ;
Fox, Nick C. ;
Gamst, Anthony ;
Holtzman, David M. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Snyder, Peter J. ;
Carrillo, Maria C. ;
Thies, Bill ;
Phelps, Creighton H. .
ALZHEIMERS & DEMENTIA, 2011, 7 (03) :270-279
[3]  
[Anonymous], 2004, KERNEL METHODS PATTE
[4]   Diffusion Tensor Imaging Reliably Differentiates Patients with Schizophrenia from Healthy Volunteers [J].
Ardekani, Babak A. ;
Tabesh, Ali ;
Sevy, Serge ;
Robinson, Delbert G. ;
Bilder, Robert M. ;
Szeszko, Philip R. .
HUMAN BRAIN MAPPING, 2011, 32 (01) :1-9
[5]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[6]   Detecting concealed information using brain-imaging technology [J].
Bles, Mart ;
Haynes, John-Dylan .
NEUROCASE, 2008, 14 (01) :82-92
[7]   Characterizing Alzheimer's disease using a hypometabolic convergence index [J].
Chen, Kewei ;
Ayutyanont, Napatkamon ;
Langbaum, Jessica B. S. ;
Fleisher, Adam S. ;
Reschke, Cole ;
Lee, Wendy ;
Liu, Xiaofen ;
Bandy, Dan ;
Alexander, Gene E. ;
Thompson, Paul M. ;
Shaw, Leslie ;
Trojanowski, John Q. ;
Jack, Clifford R., Jr. ;
Landau, Susan M. ;
Foster, Norman L. ;
Harvey, Danielle J. ;
Weiner, Michael W. ;
Koeppe, Robert A. ;
Jagust, William J. ;
Reiman, Eric M. .
NEUROIMAGE, 2011, 56 (01) :52-60
[8]   Machine-learning techniques for building a diagnostic model for very mild dementia [J].
Chen, Rong ;
Herskovits, Edward H. .
NEUROIMAGE, 2010, 52 (01) :234-244
[9]   Prognostic and Diagnostic Potential of the Structural Neuroanatomy of Depression [J].
Costafreda, Sergi G. ;
Chu, Carlton ;
Ashburner, John ;
Fu, Cynthia H. Y. .
PLOS ONE, 2009, 4 (07)
[10]   Neural correlates of sad faces predict clinical remission to cognitive behavioural therapy in depression [J].
Costafreda, Sergi G. ;
Khanna, Akash ;
Mourao-Miranda, Janaina ;
Fu, Cynthia H. Y. .
NEUROREPORT, 2009, 20 (07) :637-641