End states-the zero-dimensional analogs of the two-dimensional states that occur at a crystal surface-were observed at the ends of one-dimensional atom chains that were self-assembled by depositing gold on the vicinal Si(553) surface. Scanning tunneling spectroscopy measurements of the differential conductance along the chains revealed quantized states in isolated segments with differentiated states forming over end atoms. A comparison to a tight-binding model demonstrated how the formation of electronic end states transforms the density of states and the energy levels within the chains.