Intercomparison of measurement techniques for black or elemental carbon under urban background conditions in wintertime:: Influence of biomass combustion

被引:86
作者
Reisinger, P. [1 ]
Wonaschuetz, A. [1 ]
Hitzenberger, R. [1 ]
Petzold, A. [2 ]
Bauer, H. [3 ]
Jankowski, N. [3 ]
Puxbaum, H. [3 ]
Chi, X. [4 ]
Maenhaut, W. [4 ]
机构
[1] Univ Vienna, Fac Phys, Vienna, Austria
[2] DLR, Inst Phys Atmosphare, Oberpfaffenhofen, Germany
[3] Vienna Univ Technol, Inst Chem Technol & Analyt, Vienna, Austria
[4] Univ Ghent, Inst Nucl Sci, Dept Analyt Chem, Ghent, Belgium
关键词
D O I
10.1021/es0715041
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A generally accepted method to measure black carbon (BC) or elemental carbon (EC) still does not exist. An earlier study in the Vienna area comparing practically all measurement methods in use in Europe gave comparable BC and EC concentrations under summer conditions (Hitrenberger et al., 2006a). Under summer conditions, Diesel traffic is the major source for EC or BC in Vienna. Under winter conditions, space heating (also with biomass as fuel) is another. important source (Caseiro et al., 2007). The present study compares the response of thermal methods (a modified Cachier method, Cachier et al., 1989; a thermal-optical method, Schmid et al., 2001; and two thermal-optical (TOT) methods using Sunset instruments, Birch and Cary, 1996 and Schauer et al., 2003) and optical methods (a light transmission method, Hansen et al., 1984; the integrating sphere method, Hitzenberger et al., 1996; and the multiangle absorption photometer MAAP, Petzold and Schonlinner, 2004). Significant differences were found between the TOT methods on the one hand and all other methods on the other. The TOT methods yielded EC concentrations that were lower by 44 and 17% than the average of all measured concentrations (including the TOT data).The largest discrepancy was found when the contribution of brown carbon (measured with the integrating sphere method) was largest.
引用
收藏
页码:884 / 889
页数:6
相关论文
共 33 条
[11]   On the possible origin of humic matter in fine continental aerosol -: art. no. 4137 [J].
Gelencsér, A ;
Hoffer, A ;
Krivácsy, Z ;
Kiss, G ;
Molnár, A ;
Mészáros, E .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D12)
[12]   Atmospheric HULIS: How humic-like are they? A comprehensive and critical review [J].
Graber, ER ;
Rudich, Y .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :729-753
[13]   THE AETHALOMETER - AN INSTRUMENT FOR THE REAL-TIME MEASUREMENT OF OPTICAL-ABSORPTION BY AEROSOL-PARTICLES [J].
HANSEN, ADA ;
ROSEN, H ;
NOVAKOV, T .
SCIENCE OF THE TOTAL ENVIRONMENT, 1984, 36 (JUN) :191-196
[14]   Spectroscopic characterization of humic-like substances in airborne particulate matter [J].
Havers, N ;
Burba, P ;
Lambert, J ;
Klockow, D .
JOURNAL OF ATMOSPHERIC CHEMISTRY, 1998, 29 (01) :45-54
[15]   Black carbon measurements using an integrating sphere [J].
Hitzenberger, R ;
Dusek, U ;
Berner, A .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D14) :19601-19606
[16]   Size distribution of black (BC) and total carbon (TC) in Vienna and Ljubljana [J].
Hitzenberger, R. ;
Ctyroky, P. ;
Berner, A. ;
Tursic, J. ;
Podkrajsek, B. ;
Grgic, I. .
CHEMOSPHERE, 2006, 65 (11) :2106-2113
[17]   Intercomparison of thermal and optical measurement methods for elemental carbon and black carbon at an urban location [J].
Hitzenberger, R. ;
Petzold, A. ;
Bauer, H. ;
Ctyroky, P. ;
Pouresmaeil, P. ;
Laskus, L. ;
Puxbaum, H. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (20) :6377-6383
[18]   Comparison of black carbon (BC) aerosols in two urban areas - concentrations and size distributions [J].
Hitzenberger, R ;
Tohno, S .
ATMOSPHERIC ENVIRONMENT, 2001, 35 (12) :2153-2167
[19]   ABSORPTION-COEFFICIENTS AND MASS CONCENTRATIONS OF THE URBAN AEROSOL OF VIENNA, AUSTRIA, DURING THE YEARS 1985 AND 1986 [J].
HITZENBERGER, RM .
WATER AIR AND SOIL POLLUTION, 1993, 71 (1-2) :131-153
[20]  
JANKOWSKI N, UNPUB FAST DETERMINA