Structure and genomic organization of centromeric repeats in Arabidopsis species

被引:44
作者
Kawabe, A [1 ]
Nasuda, S
机构
[1] Kyoto Univ, Grad Sch Agr, Lab Plant Genet, Kyoto 6068502, Japan
[2] Japan Sci & Technol Corp, CREST, Tokyo 1010062, Japan
[3] Univ Edinburgh, Inst Evolutionary Biol, Ashworth Labs, Edinburgh EH9 3JT, Midlothian, Scotland
基金
日本学术振兴会;
关键词
Arabidopsis gemmifera; centromere; satellite DNA; in situ hybridization;
D O I
10.1007/s00438-004-1081-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Centromeric repetitive sequences were isolated from Arabidopsis halleri ssp. gemmifera and A. lyrata ssp. kawasakiana. Two novel repeat families isolated from A. gemmifera were designated pAge1 and pAge2. These repeats are 180 bp in length and are organized in a head-to-tail manner. They are similar to the pAL1 repeats of A. thaliana and the pAa units of A. arenosa. Both A. gemmifera and A. kawasakiana possess the pAa, pAgel and pAge2 repeat families. Sequence comparisons of different centromeric repeats revealed that these families share a highly conserved region of approximately 50 bp. Within each of the four repeat families, two or three regions showed low levels of sequence variation. The average difference in nucleotide sequence was approximately 10% within families and 30% between families, which resulted in clear distinctions between families upon phylogenetic analysis. FISH analysis revealed that the localization patterns for the pAa, pAgel and pAge2 families were chromosome specific in A. gemmifera and A. kawasakiana. In one pair of chromosomes in A. gemmifera, and three pairs of chromosomes in A. kawasakiana, two repeat families were present. The presence of three families of centromeric repeats in A. gemmifera and A. kawasakiana indicates that the first step toward homogenization of centromeric repeats occurred at the chromosome level.
引用
收藏
页码:593 / 602
页数:10
相关论文
共 54 条
[1]   A cereal centromeric sequence [J].
AragonAlcaide, L ;
Miller, T ;
Schwarzacher, T ;
Reader, S ;
Moore, G .
CHROMOSOMA, 1996, 105 (05) :261-268
[2]   Multiple repetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana L. [J].
Brandes, A ;
Thompson, H ;
Dean, C ;
HeslopHarrison, JS .
CHROMOSOME RESEARCH, 1997, 5 (04) :238-246
[3]   THE EVOLUTIONARY DYNAMICS OF REPETITIVE DNA IN EUKARYOTES [J].
CHARLESWORTH, B ;
SNIEGOWSKI, P ;
STEPHAN, W .
NATURE, 1994, 371 (6494) :215-220
[4]  
Cheng ZJ, 2003, GENETICS, V164, P665
[5]   Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon [J].
Cheng, ZK ;
Dong, FG ;
Langdon, T ;
Shu, OY ;
Buell, CR ;
Gu, MH ;
Blattner, FR ;
Jiang, JM .
PLANT CELL, 2002, 14 (08) :1691-1704
[6]   A SURVEY OF THE GENOMIC DISTRIBUTION OF ALPHA-SATELLITE DNA ON ALL THE HUMAN-CHROMOSOMES, AND DERIVATION OF A NEW CONSENSUS SEQUENCE [J].
CHOO, KH ;
VISSEL, B ;
NAGY, A ;
EARLE, E ;
KALITSIS, P .
NUCLEIC ACIDS RESEARCH, 1991, 19 (06) :1179-1182
[7]   Genetic definition and sequence analysis of Arabidopsis centromeres [J].
Copenhaver, GP ;
Nickel, K ;
Kuromori, T ;
Benito, MI ;
Kaul, S ;
Lin, XY ;
Bevan, M ;
Murphy, G ;
Harris, B ;
Parnell, LD ;
McCombie, WR ;
Martienssen, RA ;
Marra, M ;
Preuss, D .
SCIENCE, 1999, 286 (5449) :2468-2474
[8]   Something from nothing: The evolution and utility of satellite repeats [J].
Csink, AK ;
Henikoff, S .
TRENDS IN GENETICS, 1998, 14 (05) :200-204
[9]   Rice (Oryza sativa) centromeric regions consist of complex DNA [J].
Dong, FG ;
Miller, JT ;
Jackson, SA ;
Wang, GL ;
Ronald, PC ;
Jiang, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (14) :8135-8140
[10]   Cytogenetics for the model system Arabidopsis thaliana [J].
Fransz, P ;
Armstrong, S ;
Alonso-Blanco, C ;
Fischer, TC ;
Torres-Ruiz, RA ;
Jones, G .
PLANT JOURNAL, 1998, 13 (06) :867-876