Regulation of angiogenesis: Wound healing as a model

被引:277
作者
Eming, Sabine A.
Brachvogel, Bent
Odorisio, Teresa
Koch, Manuel
机构
[1] Univ Cologne, Dept Dermatol, D-50931 Cologne, Germany
[2] Univ Cologne, Fac Med, Ctr Biochem, D-50931 Cologne, Germany
[3] Univ Cologne, Fac Med, Ctr Mol Med, D-50931 Cologne, Germany
[4] IDI IRCCS, Lab Mol & Cell Biol, I-00167 Rome, Italy
关键词
D O I
10.1016/j.proghi.2007.06.001
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Normal tissue function requires adequate supply of oxygen through blood vessels. Understanding how blood vessels form is a challenging objective because angiogenesis is vital to many physiological and pathological processes. Unraveling mechanisms of angiogenesis would offer therapeutic options to ameliorate disorders that are currently leading causes of mortality and morbidity, including cardiovascular diseases, cancer, chronic inflammatory disorders, diabetic retinopathy, excessive tissue defects, and chronic non-healing wounds. Restoring blood flow to the site of injured tissue is a prerequisite for mounting a successful repair response, and wound angiogenesis represents a paradigmatic model to study molecular mechanisms involved in the formation and remodeling of vascular structures. In particular, repair of skin defects offers an ideal model to analyze angiogenesis due to its easy accessibility to control and manipulate this process. Most of those growth factors, extracellular matrix molecules, and cell types, recently discovered and considered as crucial factors in blood vessel formation, have been identified and analyzed during skin repair and the process of wound angiogenesis. This article will review cellular and molecular mechanisms controlling angiogenesis in cutaneous tissue repair in light of recent reports and data from our laboratories. In this article we will discuss the contribution of growth factors, basement membrane molecules, and mural cells in wound angiogenesis. The article provides a rationale for targeting the angiogenic response in order to modulate the outcome of the healing response. (c) 2007 Published by Elsevier GmbH.
引用
收藏
页码:115 / 170
页数:56
相关论文
共 309 条
[1]   Peripheral blood fibrocytes: Differentiation pathway and migration to wound sites [J].
Abe, R ;
Donnelly, SC ;
Peng, T ;
Bucala, R ;
Metz, CN .
JOURNAL OF IMMUNOLOGY, 2001, 166 (12) :7556-7562
[2]   New developments in fibroblast and myofibroblast biology: Implications for fibrosis and scleroderma [J].
Abraham D.J. ;
Eckes B. ;
Rajkumar V. ;
Krieg T. .
Current Rheumatology Reports, 2007, 9 (2) :136-143
[3]   The lack of thrombospondin-1 (TSP1) dictates the course of wound healing in double-TSP1/TSP2-null mice [J].
Agah, A ;
Kyriakides, TR ;
Lawler, J ;
Bornstein, P .
AMERICAN JOURNAL OF PATHOLOGY, 2002, 161 (03) :831-839
[4]   SUPPRESSION OF RETINAL NEOVASCULARIZATION IN-VIVO BY INHIBITION OF VASCULAR ENDOTHELIAL GROWTH-FACTOR (VEGF) USING SOLUBLE VEGF-RECEPTOR CHIMERIC PROTEINS [J].
AIELLO, LP ;
PIERCE, EA ;
FOLEY, ED ;
TAKAGI, H ;
CHEN, H ;
RIDDLE, L ;
FERRARA, N ;
KING, GL ;
SMITH, LEH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (23) :10457-10461
[5]   Pericytes: Cell biology and pathology [J].
Allt, G ;
Lawrenson, JG .
CELLS TISSUES ORGANS, 2001, 169 (01) :1-11
[6]   VASCULAR ENDOTHELIAL GROWTH-FACTOR ACTS AS A SURVIVAL FACTOR FOR NEWLY FORMED RETINAL-VESSELS AND HAS IMPLICATIONS FOR RETINOPATHY OF PREMATURITY [J].
ALON, T ;
HEMO, I ;
ITIN, A ;
PEER, J ;
STONE, J ;
KESHET, E .
NATURE MEDICINE, 1995, 1 (10) :1024-1028
[7]   Corneal avascularity is due to soluble VEGF receptor-1 [J].
Ambati, Balamurali K. ;
Nozaki, Miho ;
Singh, Nirbhai ;
Takeda, Atsunobu ;
Jani, Pooja D. ;
Suthar, Tushar ;
Albuquerque, Romulo J. C. ;
Richter, Elizabeth ;
Sakurai, Eiji ;
Newcomb, Michael T. ;
Kleinman, Mark E. ;
Caldwell, Ruth B. ;
Lin, Qing ;
Ogura, Yuichiro ;
Orecchia, Angela ;
Samuelson, Don A. ;
Agnew, Dalen W. ;
St. Leger, Judy ;
Green, W. Richard ;
Mahasreshti, Parameshwar J. ;
Curiel, David T. ;
Kwan, Donna ;
Marsh, Helene ;
Ikeda, Sakae ;
Leiper, Lucy J. ;
Collinson, J. Martin ;
Bogdanovich, Sasha ;
Khurana, Tejvir S. ;
Shibuya, Masabumi ;
Baldwin, Megan E. ;
Ferrara, Napoleone ;
Gerber, Hans-Peter ;
De Falco, Sandro ;
Witta, Jassir ;
Baffi, Judit Z. ;
Raisler, Brian J. ;
Ambati, Jayakrishna .
NATURE, 2006, 443 (7114) :993-997
[8]   Vascular endothelial growth factor VEGF189 induces human neutrophil chemotaxis in extravascular tissue via an autocrine amplification mechanism [J].
Ancelin, M ;
Chollet-Martin, S ;
Hervé, MA ;
Legrand, C ;
El Benna, J ;
Perrot-Applanat, M .
LABORATORY INVESTIGATION, 2004, 84 (04) :502-512
[9]   Thrombospondins 1 and 2 function as inhibitors of angiogenesis [J].
Armstrong, LC ;
Bornstein, P .
MATRIX BIOLOGY, 2003, 22 (01) :63-71
[10]   Endothelial/pericyte interactions [J].
Armulik, A ;
Abramsson, A ;
Betsholtz, C .
CIRCULATION RESEARCH, 2005, 97 (06) :512-523